• Title/Summary/Keyword: 성능도 축척

Search Result 64, Processing Time 0.022 seconds

Full Scale Frictional Resistance Reduction Effect of a Low Frictional Marine Anti-fouling Paint based on a Similarity Scaling Method (상사축척법에 기반한 저마찰 선박 방오도료의 실선 마찰저항 저감성능 추정)

  • Yang, Jeong Woo;Park, Hyun;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • In this study, a series of full-scale extrapolation procedures based on the Granville's similarity scaling method, which was employed by Schultz (2007), is modified and then applied to compare the resistance performance between two different anti-fouling coatings. As an analysis example, the low frictional AF coating based on a novel skin-friction reducing polymer named FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer), which had been invented by the present author, is employed. The low frictional coating, which gives 25.4% skin frictional reduction in lab test, is estimated to give 18.2% total resistance reduction for a 176k DWT bulk carrier.

Component Map Generation of a Gas Turbine Engine Using Genetic Algorithms and Scaling Method (유전자 알고리즘과 스케일링 기법을 이용한 가스터빈 엔진 구성품 성능선도 개선에 관한 연구)

  • Kho Seong-Hee;Kong Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.299-303
    • /
    • 2005
  • In the present study, in order to improve precision of the component characteristic maps generated by the scaling method, a map generation method which can produce a compressor map from some experimental performance data using GAs(Genetic Algorithms) was proposed. However, in case of the proposed map generation method only using GAs, because it has a drawback for estimating correctly the surge points and the choke points of the compressor map, a modified GAs method was additionally proposed through complementally use of the scaling method to determine obviously those points of the compressor map.

  • PDF

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-7
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Ki Ja-Young;Kong Chang-Duck;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle). In order to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. When the performance analysis is performed at far away operation conditions from the design point, in case of use of e component map by the traditional scaling method, the error of the performance analysis results is greatly increasing. In the other hand, if in case of use of the compressor map generated by the proposed GAs scheme, the performance analysis results are closely met with those by the performance deck, EEPP.

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Kong Chang-Duck;Ki Ja-Young;Lee Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.149-153
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle). In ordo to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. In this investigation, it was found that the newly proposed map generation method would be more effective than the traditional scaling method.

  • PDF

GIS 공간분석기술을 이용한 산불취약지역 분석

  • 한종규;연영광;지광훈
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2002.03b
    • /
    • pp.49-59
    • /
    • 2002
  • 이 연구에서는 강원도 삼척시를 대상으로 산불취약지역 분석모델을 개발하고, 개발된 분석모델을 기반으로 산불취약지역을 표출하였으며, 이를 위한 전산프로그램을 개발하였다. 산불취약지역 공간분석자료로는 NGIS 사업을 통해 구축된 1/25천 축척의 수치지형도, 수치임상도 그리고 과거 산불발화위치자료를 사용하였다. 산불발화위치에 대한 공간적 분포특성(지형, 임상, 접근성)을 기반으로 모델을 설정하였으며, 공간분석은 간단하면서도 일반인들이 이해하기 쉬운 Conditional probability, Likelihood ratio 방법을 사용하였다. 그리고 각각의 모델에 대한 검증(cross validation)을 실시하였다. 모델 검증방법으로는 과거 산불발화위치자료를 발생시기에 따라 두 개의 그룹으로 나누어 하나는 예측을 위한 자료로 사용하고, 다른 하나는 검증을 위한 자료로 사용하였다. 모델별 예측성능은 prediction rate curve를 비교·분석하여 판단하였다. 삼척시를 대상으로 한 예측성능에서 Likelihood ratio 모델이 Conditional probability 모델보다 더 낳은 결과를 보였다. 산불취약지역 분석기술로 작성된 상세 산불취약지역지도와 현재 산림청에서 예보하고 있는 전국단위의 산불발생위험지수와 함께 상호보완적으로 사용한다면 산불취약지역에 대한 산불감시인력 및 감시시설의 효율적인 배치를 통하여 일선 시군 또는 읍면 산불예방업무의 효율성이 한층 더 증대될 것으로 기대된다.

  • PDF

The Effects of Leading Edge Flap Deflection on Supersonic Cruise Performance of a Fighter Class Aircraft (전투기급 항공기 초음속 순항 성능에 미치는 앞전플랩 변위 효과)

  • Chung, In-Jae;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.899-904
    • /
    • 2007
  • During the conceptual design phase of fighter class aircraft, the high speed wind tunnel test with 1/20 scale wing-body-tail model has been conducted to investigate the effects of leading edge flap deflection on the supersonic cruise performance of the aircraft. To select the proper leading edge flap deflection for the wind tunnel test, the aerodynamic characteristics due to various leading edge flap deflections have been analyzed by using corrected supersonic panel method. Based on the results obtained from the experimental and numerical approaches, the effects of leading edge flap deflection have shown to be useful to enhance the supersonic cruise performance of fighter class aircraft.

Performance Based Design for High Curability Concrete (성능중심형 고내구성 콘크리트의 배합설계)

  • Kim, S.S.;Park, K.P.;Lee, J.B.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.969-974
    • /
    • 2008
  • This study was carried out to investigate the service life of reinforced concrete structures for durability design. The service life has three aspects physical service life, functional service life, and social service life, and that a structures are normally demolished to end its service life when either the functional or social service life is over before the physical service life comes to end an end. In the future, it is very important that durability design shall be performed establishing design service life and the unallowable state of deterioration in the course of design service life.

  • PDF

Study on Component Map Generation and Performance Simulation of 2-spool Separate Flow Type Turbofan Engine Using SIMULINK (SIMULINK를 이용한 2-스풀 분리형 배기방식 터보팬 엔진의 구성품 성능맵 생성 및 성능모사에 관한 연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate-flow turbofan engine named (BR715-56) which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.