• Title/Summary/Keyword: 성능기초설계

Search Result 898, Processing Time 0.031 seconds

Equation for handle assessment of cotton and polyester fabrics using nozzle extraction testing method (노즐시험법을 이용한 면/폴리에스터 직물의 촉감 방정식)

  • Yoon, Chang-Hyun;Chun, Dae-Yeop;Hong, Cheol-Jae
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.191-196
    • /
    • 2011
  • Fabric extraction force measured through nozzle tester reflects a comprehensive fabric handle. Nozzle tester takes advantage of low cost, and simple and fast operating procedure compared with KES system. The paper is to develop the semi-emprical equation for assessment of the fabric handle measured with nozzle tester on the basis of friction law. The variables considered in the equation arc fabric's frictional coefficient and drape coefficient which is determined in terms of fabric bending length and shear strain. The experiment of 12 different cotton and polyester fabrics and comparisons between experimental and theoretical results were conducted. Fabrics of high frictional coefficients, high bending length, and low shear strain showed high fabric handle forces (low handle values). The handle forces predicted from the equation agreed well with those measured, which indicates that the equation can be used to objectively evaluate fabric handle with respect to fabric's own properties and also provide an information for fabric design to improve the handle performance.

  • PDF

Suggestion of Flexural Strengthening Ratio of NSM Strengthened Concrete Railroad Bridge based on Probability and Reliability (확률.신뢰도에 기초한 표면매립보강(NSM) 콘크리트 철도교의 휨보강비 산정)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Ki-Hong;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.121-124
    • /
    • 2008
  • The purpose of this study is to evaluate the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate. The railroad bridge is usually under vibration and impact in service state. Therefore, it is important that the effective strengthening performance must be exhibited under the service loading is acted. To widely apply the NSM method for the concrete railroad bridge in field, it needs that reasonable strengthening parameter such as strengthening ratio has to be investigated and evaluated when the strengthening design is conducted. In this study, to suggest more reasonable strengthening ratio, material and geometrical uncertainty was considered and applied by Monte Carlo Simulation (MSC) technique. Lastly, the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate was evaluated by using the limit state function with the target reliability index.

  • PDF

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

A PID Genetic Controller Design Using Reference Model (기준모델을 이용한 PID 유전 제어기 설계)

  • Park, K.H.;Nam, M.H.;Hwang, Y.W.;Chun, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.894-896
    • /
    • 1999
  • PID 제어는 50년의 역사를 갖기 때문에 현장의 사용자는 이 제어방식에 익숙해져 있으며, 제어장치의 구성이 간단하며 제어기의 최적동조가 가능하므로 많은 분야에서 사용되고 있다[1]. 그러나 PID 제어기에 의해서 얻은 결과에 대하여 만족하기 위해서는 많은 시행착오를 겪어야 한다. 또한 만족하는 결과를 얻었다고 할지라도 외란, 플랜트의 동특성이 바뀌는 경우 시스템을 추종하지 못하기 때문에 파라미터를 재조정하여야 한다. 유전 알고리즘은 자연세계의 진화 현상에 기초한 계산모델로서 John Holland에 의해서 1975년에 개발된 전역적인 최적화 알고리즘이며[1][2], 비선형 고차원, 불연속, 다중모드, 노이즈 함수 등에 대하여 강건함을 보여주고, 복잡한 탐색 공간에서 최적 값을 스스로 발견하는 학습 능력을 갖는다. 이 방법은 재생산, 교배, 돌연변이를 통하여 최적해를 찾은 방법으로 1989년에 D. E. Goldgerg에 의해서 체계적으로 정리된 후 여러 분야에서 응용되고 있다[3][4]. 그러나 유전 알고리즘은 목적함수만을 이용하여 해집단을 탐색하기 때문에 숙련운전자가 원하는 제어 특성 명세인 상승시간, 정착시간, 초과량(oveshoot) 둥을 구체적으로 명시하여 제어에 반영할 수 없다. 또한, 유전 알고리즘은 입력 값이 크게 바뀔 경우 다른 시스템으로 인식하여 새로운 탐색을 수행하는 단점을 가지고 있다. 본 논문은 첫째, 기준모델을 도입하여 플랜트의 성능을 기준모델로 표현하여 플랜트가 요구하는 성능지표를 정량적으로 규정하는 것이 가능하였다. 또한, 이것은 미지 플랜트 동특성을 식별하기 위한 신호로 사용되어, 플랜트의 정보를 얻는데 이용되었다. 즉, 기준모델과 플랜트 출력사이의 추종 오차 정보가 적응기구인 PID 유전제어기의 입력으로 사용되며, 구형파 입력의 경우에도 기준모델과 플랜트의 출력차는 크게 변하지 않는다. 따라서, 유전 알고리즘의 목적함수에 기준 모델을 제안 적용하여 안정적이고, 세밀한 제어를 수행하였다. 둘째, PID의 간단하면서 확실한 제어가 가능하다는 점과 전역적인 최적값을 찾을 수 있는 유전 알고리즘을 적용하여 고속제어를 요하는 직류 서보 모터(DC Servo Motor) 운전 시 실시간 파라미터 동조에 적용하였다.

  • PDF

Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가)

  • Tran, Nghiem Xuan;Lee, Jin-sun;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2017
  • Aseismic designs of pile-supported wharves are commonly performed utilizing simplified dynamic analyses, such as multi-mode spectral analyses. Simplified analyses can be useful for evaluating the limit state of structures. However, several pile-supported wharves, that have been damaged during past earthquakes, have shown that soil deformation and soil-pile dynamic interaction significantly affect the entire behavior of structures. Such behavior can be captured by performing nonlinear effective stress analyses, which can properly consider the dynamic interactions among the soil-pile-structure. The present study attempts to investigate the earthquake performance of a pile-supported wharf utilizing a three-dimensional numerical method. The damaged pile-supported wharf at the Kobe Port during the Hyogo-ken Nambu earthquake (1995) is selected to verify the applicability of the numerical modeling. Analysis results showed a suitable agreement with the observations on the damaged wharf, and the significant effect of excess pore pressure development and pile-soil dynamic interaction on the seismic performance of the wharf.

Mechanical characteristics of high-performance concrete shield segment containing ground granulated blast furnace slag and their improvement by steam curing (고성능 쉴드 세그먼트용 고로슬래그 미분말을 혼입한 콘크리트의 역학적 특성 및 증기양생 효과 분석)

  • Kim, Byoung-Kwon;Lee, Jin-Seop;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.233-242
    • /
    • 2011
  • This study aims to evaluate the applicability of high-strength concrete mixed with blast furnace slag to shield segment lining in order to improve its performance and economic efficiency. Especially, it was also intended to derive the optimum replacing ratio of ground granulated blast furnace slag to ordinary cement as well as the optimum steam curing condition for shield segment concrete with the design strength of 60 MPa. From a series of experiments, the condition of 50% replacement of ordinary cement by ground granulated blast furnace slag and unit water content of 125 kg/$m^3$ was proposed as the optimum mixing condition. Comparing with standard curing conditions, it was also possible to expect approximately 110~442% strength improvement of concrete by steam curing in the same mixing condition.

Experimental Study of Performance and Bubble Pattern of Air-Lift Pumps with Various Tube Diameters and Submergence Ratios (공기부양 펌프의 관직경과 잠수비 변화에 따른 기포 형상과 성능에 관한 실험적 연구)

  • Kim, Seung Hwan;Sohn, Chae Hoon;Hwang, Jun Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.837-845
    • /
    • 2013
  • An airlift pump can be used to pump liquids and sediments within itself, which cannot easily be pumped up by a conventional method, by using the airlift effect. This characteristic of the airlift pump can be exploited in a DCFC (Direct Carbon Fuel Cell) so that molten fuel with high temperature may be carried or transported. The basic characteristics of airlift are investigated. A simple system is constructed, where the reservoir is filled with water, a tube is inserted, and air is supplied from the bottom of the tube. Then, water is lifted and its flow rate is measured. Bubble patterns in the tube are observed in a range of air flow rates with the parameters of the tube diameter and submergence ratio, leading to four distinct regimes. The pumping performance is predicted, and the correlation between the supplied gas flow rate and the induced flow rate of water is found.

The Research for the Establishment of Test Method of Durability on Intumescent Coating System (내화도료 내구성 평가 방법 설정에 관한 연구)

  • Choi, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.40-47
    • /
    • 2009
  • Applying fire resistive coating to steel members is one of the general methods to secure fire resistance performance of steel members. And intumescent coating system is currently one of methods giving fire resistance to steel members. Intumescent coating system for fire resistance, however, has undesirable weaknesses that fire resistance performance of steel members is being deteriorated due to cracks and falling-offs of the coverings as time goes after completion of the coverings to the members. So it is necessary to understand changes of the durability and the fire resistance performance of intumescent coating system over a time elapse and to reflect such change properly into the building design and construction. This research is performed to present the test method of durability and the maintenance of intumescent coating system through theoretical investigation of the test method of durability and the guide of maintenance & management of intumescent coating system of several countries, including the Britain, United States, Japan.

The Numerical Study on Capacity Evaluation of Exposed Steel Column-Base Plate Connection (노출형 철골기둥-베이스 플레이트 접합부의 내력평가를 위한 수치적 연구)

  • Lee, Kwang-Ho;You, Young-Chan;Choi, Ki-Sun;Koo, Hye-Jin;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.26-34
    • /
    • 2016
  • The failure modes of steel column-base plate connection arranged on the basis of AISC Design Guide-#1 and -#10 are base plate tension and compression side flexural yielding, yielding, pull-out and shear failure of anchor rod, concrete crushing in concrete footing and steel column yielding. The bending moment capacity and failure mode in this connection are predicted using limit-state function and we compare these results and test result. In the case that thickness of base plate is relatively thick, bending moment capacity and failure mode in steel column-base plate connection accurately predicted. But in the case that thickness of base plate is relatively thin and axial force do not exist, prediction of failure mode in this connection is somewhat inaccurate.

Review of Spatting Effect on Concrete Element in Fire (화재시 콘크리트 요소 폭렬영향성 고찰)

  • Kim, Hyung-Jun;Han, Sang-Hoon;Choi, Seng-Kwan
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.54-63
    • /
    • 2007
  • Concrete is generally accepted to have good inherent fire resistance. It mainly relies on the assumption that concrete has low heat-transfer characteristic and spatting does not occur during the course of a fire. However, the significant numbers of fire accidents have shown in recent years that incidence of spatting has caused sever damages to many structures. This review has systematically investigated the behaviour of concrete in fire, including phenomenon of spatting, with respect to the theorical consideration and experimental results. Explosive spatting is caused by the build-up of water vapor pressure in concrete subjected to increasing temperatures. When this pressure exceeds the tensile strength of the concrete over a fire-exposed area, explosive spatting can result in a typical temperature range between $200^{\circ}C\;and\;400^{\circ}C$. The major functions are known to be moisture content, pore pressure, load ratio, and heating regime.