• Title/Summary/Keyword: 성능기준내진설계

Search Result 213, Processing Time 0.022 seconds

Seismic performance evaluation of existing road tunnels based on revised seismic design code (개정된 내진설계기준에 기반한 기존 도로 터널의 내진 성능 평가)

  • Gyu-Phil Lee;Du-Hee Park;Ji-Eun Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.525-540
    • /
    • 2023
  • Because of a new seismic design code has been enacted in 2023, there is a need to evaluate whether the road tunnels in operation satisfies the requirements of the new code. Four tunnels that are considered to be most susceptible to damage. Time history analyses are performed to quantify their seismic performances. The input ground motions generated to fit both 2007 and 2023 codes are used to evaluate the effect of the motions on the calculated responses. The analyses show that all tunnels perform favorably and satisfies the requirements successfully. Therefore, retrofit or reinforcement are deemed as unnecessary.

정압관리소의 지진계측기 설치를 위한 지진응답 특성 분석

  • 권기준;김익현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.235-240
    • /
    • 2000
  • 도시가스는 도시생활을 유지하는데 필수 불가결한 라이프라인으로 가스사업자는 평상시 안정공급을 확보하는 것은 물론 지진과 같은 대규모의 자연재해가 발생한 경우에도 대처할 수 있도록 평상시부터 준비를 철저히 하지 않으면 안 된다. 우리나라에서는 1988년 건축물의 내진설계기준이 도입된 이래 일부시설에 대한 내진 설계기준이 설정되어 있다. 가스시설에 대해서도 1997년 한국지진공학회으로부터 우리나라의 지진환경을 고려한 가스시설의 내진성능기준(안) 및 내진설계 표준서(안)이 제시되어 가스시설물의 내진설계를 위한 기본적인 틀을 갖추었다. (중략)

  • PDF

Basic Design for Earthquake Resistance of Typical Bridges (일반교량의 내진성능 확보를 위한 기본설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Structural elements of typical bridges are superstructure, connections, substuctures and foundations and earthquake resistance is decided with the failure mechanism formed by substuctures and connections. Therefore earthquake resistant design should be carried out in the basic design step where design strengths, e.g. design sections for structural elements are determined. The Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides two basic design procedures. The first conventional procedure applies the Code-provided response modification factors. The second new procedure is the ductility-based earthquake resistant design, where designer can determine the response modification factors. In this study, basic designs including the two design processes are carried out for a typical bridge and supplements are identified in view of providing earthquake resistance.

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

Strengthening of an Existing Bridge for Achievement of Seismic Performance (내진성능 확보를 위한 기존교량의 보강)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • After introduction of the earthquake resistant design code, it is required to achieve seismic performance of existing bridges as well as earthquake resistant design of new bridges. The achievement of seismic performance for existing bridges should satisfy the no collapse requirement based on the basic concept of earthquake resistant design, therefore, various methods with different strengthening scale should be suggested according to bridge types and importance categories. At present for typical bridges, most studied and applied strengthening methods are bearing change, pier strengthening and shear key installation for improvement of seismic performance. In this study a typical existing bridge, for which earthquake resistant design is not considered, is selected as an analysis bridge. Design changes are carried out to satisfy the no collapse requirement by way of the ductile failure mechanism and seismic performances are checked. It is shown that the seismic performance of existing bridges can be achieved by way of redesign of bridge system, e.g. determination of pier design section for substructure and change of bearing function for connections between super/sub-structure.

Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper (점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.271-278
    • /
    • 2000
  • In this study the effect and applicability of viscoelastic dampers on the seismic reinforcement of steel framed structures are investigated in the context of the performance based design approach. The effect of the damper on dissipating the input seismic energy was investigated with a single degree of freedom system. For analysis models a five-story steel frame subjected to gravity load, a ten-story and twenty-story structure subjected to gravity and wind load were designed. The code-specified design spectrums were constructed for each soil type and performance objective, and artificial ground excitation records to be used in the nonlinear time history analysis were generated based on the design spectrums. Inter-story drift was adopted as the primary performance criterion. According to the analysis results, all model structures turned out to satisfy the performance level for most of the soil conditions except for the soft soil(operational level). It was also found that the seismic performance could be greatly enhanced, and the structures were led to behave elastically by installing viscoelastic dampers on appropriate locations.

  • PDF

Pseudo Dynamic Test for the Seismic Performance Enhancement of Circular RC Bridge Piers Retrofitted with Fibers (섬유보강 원형 철근콘크리트 교각의 내진성능 향상에 관한 유사동적 실험)

  • 정영수;박종협;박희상;조창백
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.180-189
    • /
    • 2002
  • The objective of this experimental research is to assess the seismic performance of circular RC bridge pier specimens retrofitted with fibers which were designed as a prototype of Hagal bridge in the city of Suwon, Korea. Pseudo dynamic test has been done for four(4) test specimens which were nonseismically or seismically designed by the related provisions of the Korea roadway bridge design specification, and four nonseisemic test specimens retrofitted with fibers in the plastic hinge region. Glass and carbon fiber sheets were used for the seismic capacity enhancement of circular test specimens. Important test parameters were confinement steel ratio, load pattern, and retrofitting. The seismic behavior has been analyzed through the displacement ductility, energy analysis, and capacity spectrum. Approximate 7.7 ∼8.7 displacement ductility was observed for nonseismic test specimens retrofitted with fibers subjected to Korea Highway Cooperation artificial earthquake motions. It is concluded that these retrofitted test specimens could have sufficient seismic capacity in the region of moderate seismic zone.

Development of Seismic Performance Estimation Service of Bridge through Seismic Risk Assessment (지진위험도평가 방법을 통한 교량의 내진성능 추정 서비스 개발)

  • Cho, Han Min;Lee, Jin Hyuk;Park, Ki Tae;Kim, Kun Soo;Jung, Kyu San;Kim, Jae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.535-542
    • /
    • 2023
  • In order to understand the seismic performance of a bridge, it is common to review through seismic performance evaluation and numerical analysis of the target bridge. Seismic performance evaluation and review through numerical analysis are analysis methods for specific target bridges, and many problems can arise in each management body managing bridges nationwide. Therefore, in this study, research was conducted to estimate the seismic performance of public bridges with various types and characteristics. Seismic performance was estimated by applying the seismic risk assessment method, calculating the seismic fragility curve for the type and specifications of the bridge, and estimating the seismic performance of the bridge in use by applying the domestic seismic design standard. In addition, by installing it on the platform, service items were established so that users can easily review the estimation of seismic performance of domestic bridges.

Seismic Performance Evaluation of Reinforced Concrete Moment Framed Low-story School buildings (철근콘크리트 모멘트 골조 저층형 학교건축물의 내진성능 평가)

  • Hwang, Ji-Hyun;Park, Tae-Won;Han, Ju-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4580-4586
    • /
    • 2013
  • Many school buildings are not applied seismic code because of small size structures. But it must be designed to show enough structural performance when subject to earthquake due to the fact that most of school buildings are generally used as public shelters when the natural disasters. In this study, the seismic risk of the reinforced concrete school building structure which is the most common types of school structures was evaluated by using the seismic performance evaluation methods. As a result, model structures don't have enough seismic performance.

Anti-Seismic Performance Evaluation of Circular Pier By Interval Reinforcement (보강간격에 따른 원형 기둥부재의 내진 성능 평가)

  • Jang, Il-Young;Kim, Seong-Kyum;Park, Jun-Young;Yang, Jae-Yeol
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.165-165
    • /
    • 2011
  • 내진 설계규정이 적용되기 이전에 시공되어 사용 중인 교량의 경우 지진 발생시 교각의 파괴 또는 구조적 피해는 교량 전체 시스템의 붕괴를 초래하므로 지진하중에 대하여 피해를 최소화해야 한다. 이를 위해 내진설계규정이 적용되기 이전의 교량 또는 지진취약지역으로 분류된 곳의 교량, 사회적 중요도가 높은 교량에 대해 교각의 내진성능보강을 실시하고 있다. 2007년 말 국토해양부가 관리하고 있는 11,940개 교량 중 지진 발생시 피해가 우려되는 1,342개(일반국도 682개, 고속국도 600개) 교량에 대해 2006년부터 내진보강이 착수되었고 2009년에는 확대 추진하여 일반국도 80개교, 고속국도 100개교에 대한 보강을 실시하였다. 이와 같이 확대 추진되고 있는 정책에 반해, 내진보강 기술 및 제품이 부족하고 새로운 내진보강재 개발이 불가피해지고 있는 것이 현실이다. 소성영역에서의 횡방향 철근은 지진 시 종방향 철근의 좌굴과 콘크리트의 압축강도저하를 방지하며, 전단보강철근으로도 중요한 역할을 하여 교각의 전단강도를 증가시킨다. 그러나 이러한 횡방향 철근은 초기 설계에 의한 시공이 종료된 후 기존의 성능을 증가시키기 위하여 철근량을 증가하거나 단면의 변화를 주기에는 매우 어려운 일이다. 따라서 내진성능을 위한 단면력 증가를 위하여 다양한 재료의 보강재와 형식이 사용되고 있다. 본 연구에서는 원형교각 모델의 구조해석을 이용해 내진성능평가를 선행한 후 실험체를 제작, Helical Bar를 보강하여 준정적 실험을 통해 내진보강성능을 평가하였다. 압축설계강도 $f_{ck}=240kgf/cm^2$를 기준으로 교량등급 2등교인 일반적인 도로교의 1/4축소모형을 설계, 기초부는 $1,200{\times}600{\times}600$ (mm)으로 철근과 콘크리트로 구성하였으며, 기둥부는 직경 400mm, 높이 1,250mm 크기의 철근콘크리트 원형 교각 실험체를 제작하였다. 제작된 실험체는 총 3개로, 분류는 무보강 일반 실험체, Helical Bar 직경에 따른 분류, 보강간격에 따른 분류로 나누어진다.

  • PDF