• Title/Summary/Keyword: 성과평가 시스템

Search Result 1,838, Processing Time 0.032 seconds

Effect of the Community-Based Chronic Disease Management Service Using Information and Communication Technology (정보통신기술을 이용한 지역사회 기반 만성질환관리 서비스 효과 평가)

  • Eun Jin Park;Yun Su Lee;Tae Yon Kim;Seung Hee Yoo;Hye Ran Jin;Noor Afif Mahmudah;MinSu Ock;Tae-Yoon Hwang;Yeong Mi KIm;Jung Jeung Lee
    • Journal of agricultural medicine and community health
    • /
    • v.49 no.3
    • /
    • pp.257-270
    • /
    • 2024
  • Objective: This study aimed to empirically evaluate the effectiveness of chronic disease management services utilizing ICT for patients with chronic illnesses. Methods: From May to December, 2023, 452 people who were diagnosed with hypertension and diabetes at 9 participating public health centers were provided with customized health care services for 24 weeks, and 15 performance indicators were analyzed to evaluate their effectiveness. Results: Health behavior indicators and health risk factors decreased before and after participation in the project, blood pressure control rate, hypertension and diabetes management rate, medication compliance, weight, BMI, BP, WC, FBG, and HDL-cholesterol improved(p<0.001). Service factors that influence the improvement of health behaviors included the number of activity monitor transmissions(p=0.049), confirmed concentrated consultations on physical activity(p=0.003) and nutrition(p=0.005), and the adherence to medication missions for hypertension(p=0.020). As for service factors influencing chronic disease management, the improvement in blood pressure regulation rate was due to the number of times the blood pressure monitor was linked(p=0.004), and the number of confirmed intensive consultations on physical activity(p=0.026), and nutrition(p=0.049); the improvement in hypertension control rate was due to the number of times the activity monitor and blood pressure monitor were linked(p<0.001), and the number of hypertension medication missions carried out (p=0.004); and the improvement in diabetes control rate was due to the number of times the blood pressure monitor(p=0.022) and blood sugar system were linked(p=0.017). Conclusion: Although this study has limitations as a comparative study before and after the service, it has proved that chronic disease management using ICT has a positive effect on improvement of health behavior indicator, reduction of health risk factors, hypertension, diabetes management index, weight, BMI, TG, BP, FBG improvement.

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

The Effects of Negative- and Positive- Charged Surfactants on In vitro DM Digestibility and the Growth of Ruminal Mixed Microorganisms (양(+) 이온성 및 음(-) 이온성 계면활성제 첨가가 반추위 혼합 미생물에 의한 In vitro 건물소화율 및 미생물 성장에 미치는 영향)

  • Lee, S.J.;Shin, N.H.;Kim, W.Y.;Moon, Y.H.;Kim, H.S.;Ha, J.K.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • In order to investigate the effects of supplemental ionic surfactants in in vitro ruminal fermentation, N-Lauroylsarcosine sodium salt(N-LSS) and sodium dodecyl sulfate(SDS) for negative(-) ionic surfactant, and hexadecylpyridinium chloride monohydrate(HPCM) and hexadecyltrimethyl ammonium bromide(HTAB) for positive (+) ionic surfactant were supplemented by 0.05% and 0.1% into the Dehority’s artificial medium containing rice straw(1mm) as a substrate. In vitro DM digestibility, the growth of rumen mixed microbes, pH, cumulative gas production and SEM(Scanning Electron Microscopy) observation of microbial attachment on rice straw particle were investigated through the experiment composing 9 treatments (two supplemental levels of two positive ionic(+) surfactant, two supplemental levels of two negative(-) ionic surfactant) including the control. The sample collection was at 6, 12, 24, 48 and 72 h post fermentation with 3 replications per treatments. DM digestibility in treatments supplemented (+) or (-) surfactants almost stopped afterward 12 h fermentation, in vitro DM digestibility at 72 h post fermentation in the ionic surfactants was at half level of that of the control(P<0.05). Accumulative gas production in in vitro was less(P<0.05) with addition of ionic surfactants compared to the control. The amount of rumen mixed microbes recovered from in vitro incubation fluid pleateaued at 12 h post fermentation for the positive (+) ionic surfactants, but steadily increased as fermentation time elapsed for the control. Rumen microbial growth rate was significantly(P<0.05) low in the negative(-) ionic surfactant compared to the control. pH of the incubation fluid was ranged from 6.02 to 7.20, and was the highest in the negative(-) ionic surfactants, and was the lowest in the control(P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was less with addition of ionic surfactants than the control. In conclusion we could not found any positive effects of negative- and positive- charged surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

A Study on a Effect of Product Design and a Primary factor of Qualify Competitiveness (제품 디자인의 파급효과와 품질경쟁력의 결정요인에 관한 연구)

  • Lim, Chae-Suk;Yoon, Jong-Young
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.95-104
    • /
    • 2005
  • The purpose of this study is to estimate the determinants of product design and analyze the impacts of product design on quality competitiveness, product reliability, and consumer satisfaction in an attempt to provide a foundation for the theory of design management. For this empirical analysis, this study has derived the relevant measurement variables from a survey on 400 Korean manufacturing firms during the period of $August{\sim}October$ 2003. The empirical findings are summarized as follows: First, the determinants of product design are very significantly (at p<0.001) estimated to be the R&D capability, the level of R&D expenditure, the level of innovative activities(5S, TQM, 6Sigma, QC, etc.). This empirical result can support Pawar and Driva(1999)'s two principles by which the performance of product design and product development can be simultaneously evaluated in the context of CE(concurrent engineering) of NPD(newly product development) activities. Second, the hypothesis on the causality: product design${\rightarrow}$quality competitiveness${\rightarrow}$customer satisfaction${\rightarrow}$customer loyalty is very significantly (at p<0.001) accepted. This implies that product design positively affects consumer satisfaction, not directly but indirectly, by influencing quality competitiveness. This empirical result of this study can also support the studies of for example Flynn et al.(1994), Ahire et at.(1996), Afire and Dreyfus(2000) which conclude that design management is a significant determinant of product quality. The aforementioned empirical results are important in the following sense: the empirical result that quality competitiveness plays a bridging role between product design and consumer satisfaction can reconcile the traditional debate between QFD(quality function development) approach asserted by product developers and conjoint analysis maintained by marketers. The first empirical result is related to QFD approach whereas the second empirical result is related to conjoint analysis. At the same time, the empirical results of this study can support the rationale of design integration(DI) of Ettlie(1997), i.e., the coordination of the timing and substance of product development activities performed by the various disciplines and organizational functions of a product's life cycle. Finally, the policy implication (at the corporate level) from the empirical results is that successful design management(DM) requires not only the support of top management but also the removal of communication barriers, (i.e. the adoption of cross-functional teams) so that concurrent engineering(CE), the simultaneous development of product and process designs can assure product development speed, design quality, and market success.

  • PDF

Prediction of field failure rate using data mining in the Automotive semiconductor (데이터 마이닝 기법을 이용한 차량용 반도체의 불량률 예측 연구)

  • Yun, Gyungsik;Jung, Hee-Won;Park, Seungbum
    • Journal of Technology Innovation
    • /
    • v.26 no.3
    • /
    • pp.37-68
    • /
    • 2018
  • Since the 20th century, automobiles, which are the most common means of transportation, have been evolving as the use of electronic control devices and automotive semiconductors increases dramatically. Automotive semiconductors are a key component in automotive electronic control devices and are used to provide stability, efficiency of fuel use, and stability of operation to consumers. For example, automotive semiconductors include engines control, technologies for managing electric motors, transmission control units, hybrid vehicle control, start/stop systems, electronic motor control, automotive radar and LIDAR, smart head lamps, head-up displays, lane keeping systems. As such, semiconductors are being applied to almost all electronic control devices that make up an automobile, and they are creating more effects than simply combining mechanical devices. Since automotive semiconductors have a high data rate basically, a microprocessor unit is being used instead of a micro control unit. For example, semiconductors based on ARM processors are being used in telematics, audio/video multi-medias and navigation. Automotive semiconductors require characteristics such as high reliability, durability and long-term supply, considering the period of use of the automobile for more than 10 years. The reliability of automotive semiconductors is directly linked to the safety of automobiles. The semiconductor industry uses JEDEC and AEC standards to evaluate the reliability of automotive semiconductors. In addition, the life expectancy of the product is estimated at the early stage of development and at the early stage of mass production by using the reliability test method and results that are presented as standard in the automobile industry. However, there are limitations in predicting the failure rate caused by various parameters such as customer's various conditions of use and usage time. To overcome these limitations, much research has been done in academia and industry. Among them, researches using data mining techniques have been carried out in many semiconductor fields, but application and research on automotive semiconductors have not yet been studied. In this regard, this study investigates the relationship between data generated during semiconductor assembly and package test process by using data mining technique, and uses data mining technique suitable for predicting potential failure rate using customer bad data.

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

A Proposal for Promotion of Research Activities by Analysis of KOSEF's Basic Research Supports in Agricultural Sciences (한국과학재단의 농수산분야 기초연구지원 추이분석을 통한 연구활동지원 활성화 제언)

  • Min, Tae-Sun;Choi, Hyung-Kyoon;Kim, Seong-Yong;Bai, Sung-Chul;Kim, Yoo-Yong;Yang, Moon-Sik;Chung, Bong-Hyun;Hwang, Joon-Young;Han, In-Kyu
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.23-33
    • /
    • 2005
  • Agricultural sciences field in South Korea has many strong points such as numerous researchers, establishment of research infra-structure, excellence in research competitiveness and high technological level. However, there are also many weaknesses including insufficient leadership at related societies and institutes, deficiency of the next generation research group, and insufficiency in research productivity. There are many opportunities including increasing the importance of the biotechnological industry, activating international cooperation researches, and exploring the multitude of possible research areas to be studied. However, some threats still exist, such as pressure from the government of developed countries to open the agricultural market, the decrease of specialized farms, and intensification for researches to gratify economic and social demands. To encourage research activities in the agricultural sciences field in Korea, the following actions and systems are required: 1) formulation of a mid- and a long-term research master plan, 2) development of a database on the man power in related fields, 3) activation of top-down research topics, and associated increase of individual research grants, 4) development of special national programs for basic researches in agricultural sciences, 5) organization of a committee for policy and planning within the related societies, and 6) system development for the fair evaluation of the research results.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.