• Title/Summary/Keyword: 섬유 배향 각도

Search Result 57, Processing Time 0.041 seconds

The Relationship between Fiber Stacking Angle and Delamination Growth of the Hybrid Composite Material on an Aircraft Main Wing (항공기 주익용 하이브리드 복합재의 섬유배향각과 층간분리 성장과의 관계)

  • 송삼홍;김철웅;김태수;황진우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1402-1405
    • /
    • 2003
  • The main object of this study was evaluated by the delamination damage for fiber stacking angle. Therefore, this work need to compare the shape of delamination for a different fiber stacking angie. So this study uses a method of fatigue test which was created [0]$_2$,[+45]$_2$[90]$_2$. The extension of the delamination zone formed between aluminium alloy and glass fiber-adhesive layer were measured by an ultrasonic C-scan image. As a result, the shapes of delamination zone don't depend upon the crack propagation. We could know that the delamination zone grew interaction between stress flow of fiber layer and crack driving force. Hence, the existing study were applied to the stress transfer, fiber bridging effect, delaminantion growth rate should need to the develop useful factor because of change of fiber stacking angle.

  • PDF

Relationship Between CFRP Ply Orientation and Performance Stroke in Piezoelectric Zirconate Titanate Composite Actuator(PZTCA) of Artificial Muscle (인공근육에 적용되는 압전복합재료 작동기의 탄소섬유 배향각과 작동변위의 관계)

  • Kim Cheol-Woong;Lee Sung-Hyuk;Yoon Kwang-Joon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.641-644
    • /
    • 2005
  • The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bemoulli-Euler bending moment (M) when the ply orientations of UD CFRP in Piezoelectric Zirconate Titanate Composite Actuator (PZTCA) are changed. The obtained results as follows. Firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $M^E$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $M^E$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.

  • PDF

The Effect of Fiber Stacking Angle on the Relationship Between Fatigue Crack and Delamination Behavior in a Hybrid Composite Materials (하이브리드 복합재료의 섬유배향각이 피로균열 및 층간분리 거동의 관계에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • The hybrid composite material (Al/GFRP laminates) are applied to the fuselage and wing in a aircraft. Therefore, Al/GFRP laminates suffer from the cyclic bending moments. This study was to evaluate the effect of fiber stacking angle on the fatigue crack propagation and delamination behavior using the relationship between crack growth rate (da/dN) and stress intensity factor range (ΔK) in Al/GFRP laminates under cyclic bending moment. The variable delamination growth behavior in case of three different type of fiber orientations, i.e., [Al/O$_2$/Al], [Al/+45$_2$/Al] and [Al/90$_2$/Al] at the interface of Al layer and glass fiber layer was measured by ultrasonic C-scan images. As results of this study, It represent that the delamination shape should turns out to have more effective characteristics on the fiber stacking angle. The extension of the delamination zone in case of [Al/+45$_2$/Al] and [Al/90$_2$/Al] were not formed along the fatigue crack profile. The shape of delamination zone depend on fiber stacking angle and the variable type with the delamination contour decreased non-linearly toward the crack tip at the Al layer.

Microstructural Morphology and Bending Performance Evaluation of Molded Microcomposites of Thermotropic LCP and PA6 (액정폴리머/폴리아미드6 미시복합재료의 내부구조 및 기계적 굽힘성능 평가)

  • ;Kiyoshi Takahashi
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.53-64
    • /
    • 1999
  • Microstructural morphology and bending strengths of moulded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) have been studied as a function of epoxy fraction. Injection-moulding of a composite plaque at a temperature below the melting point of the LCP fibrils generated a multi-layered structure: the surface skin layer with thickness of $65\;-\;120{\mu\textrm{m}}$ exhibiting a transverse orientation; the sub-skin layer with an orientation in the flow direction; the core layer with arc-curved flow patterns. The plaques containing epoxy 4.8vol% exhibited superior bending strength and large fracture strain. With an increase of epoxy fraction equal to and beyond 4.8vol%, geometry of LCP domains was changed from fibrillar shape to lamella-like one, which caused a shear-mode fracture. An analysis of the bending strength of the composite plaques by using a symmetric layered model beam suggested that addition of epoxy component altered not only the microstructural geometry but also the elastic moduli and strengths of the respective layers.

  • PDF

Buckling Analysis of Laminated Composite Cylindrical Shell under Combined Load State (복합하중상태에 있는 복합재료 원통형 쉘의 좌굴 거동)

  • Yeo, Kyoung-Su;Yang, Won-Ho;Cho, Myoung-Rae;Sung, Ki-Deug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.119-130
    • /
    • 1999
  • This paper deals buckling behavior of laminated composite cylindrical shells subjected to combination of axial compression and torison. Linear and nonlinear finite element analysis are carried out . the influence of load type, load ratio, fiber orientation angle, stacking sequence, and intial imperfect on buckling behavior is discussed.

  • PDF

Mixed Mode Crack Extension in Orthotropic Materials (직방성 복합재료에서 혼합모드 균열의 진전)

  • Kang, Seok-Jin;Cho, Hyung-Seok;Lim, Won-Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.35-41
    • /
    • 2005
  • The problem of an orthotropic composite material with a central crack inclined with respect to the principal axes of material symmetry is studied. The material is subjected to uniform biaxial loading along its outer boundaries. The normal stress ratio theory is applied to predict initial crack extension behavior in cracked composite materials. The dependence of the crack extension angle with respect to the biaxial loading and the principal axes of material symmetry is discussed. Our analysis shows significant effects of horizontal loading, crack angle and fiber angle on the crack extension.

Finite Element Analysis of Glass Fiber Reinforced Plastic Pipes Under Internal Pressure (내압을 받는 복합 적층 파이프(GFRP) 구조의 유한요소 해석)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.101-109
    • /
    • 1994
  • A degenerated cylindrical shell element for modeling glass fiber reinforced plastic pipes is developed and its performance for static structural analysis under internal uniform pressure is evaluated. The element is a nine node degenerated solid shell element with reduced integration technique, addition of nonconforming displacement modes, and assumed strain method to improve convergence of analysis. Several numerical examples are solved and compared with analytical solutions and other F.E.M programs, The results show that the increment of fiber orientation in the GFRP pipes with reference to the longitudinal axis cause less radial displacements and much stiffness in the pipes. This is reasonable since the internal pressure will primarily cause hoop stresses in the ring and 90-angle ply GFRP ring carry these efficiently in pure tension.

  • PDF

Proposal of Equation on Changable Performance Stroke (Δ h) and Radius of Curvature (ρ) According to the CERP Ply Orientation in PZTCA (CFRP 배향각에 따라 변화하는 PZTCA의 작동변위(Δ h)와 곡률반경(ρ)의 관계식 제안)

  • Hong Jung-Hwa;Yoon Kwang-Joon;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.318-327
    • /
    • 2006
  • Due to the diversified use of recent Piezoelectric Zirconate Titanate Composite Actuate. (PZTCA), various PZTCAs with the different ply orientation of the fiber layer have been applied. For this reason, the applicable bending moment equation is necessary even though the fiber layer ply orientation and the laminate configuration are changed. The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bernoulli-Euler bending moment (M) when the ply orientations of UD CFRP are changed. In conclusions, firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $(M^E)$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $(M^E)$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.

Analysis on the Fracture Mechanisms of SFRC under Tension (강섬유보강 콘크리트의 인장파괴메카니즘에 대한 이론연구)

  • 김규선;이차돈;심종성;최기봉;박제선
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.141-150
    • /
    • 1993
  • 콘크리트내에 짧은 길이를 갖고 임의의 방향으로 배향된 강섬유는 콘크리트가 인장응력을 받을 때 일반콘크리트에 비하여 인장강도와 연성을 증가시키며 이는 콘크리트모체내 강섬유의 균열억제메카니즘에 기인한다. 본연구에서는 기존의 각기다른 spacing 개념들에 의하여 SFRC의 인장강도를 예측하고 정확한도를 실험치와 비교하여 평가하였는데 시험체의 경계조건 및 타설시의 진동으로 인한 콘크리트내 강섬유의 재향성을 고려한 단위면적당 섬유수(N1)개념이 실행결과와 가장 좋은 상관관계를 나타내었다. 또한 SFRC의 강도후 영역에 대한 이론적인 해석이 고려되었으며 본 해석은 시험체의 경계조건, 진동효과, 콘크리트모체와 강섬유의 강섬유의 접촉면의 비선형부착특성 고려 및 특히 위험단면에서 매입길이가 다른 각 강섬유의 적합조건을 고려하였다.

섬유배향각 분포측정에 잇어서 교점계수법의 정밀도에 미치는 섬유종횡비와 면적비의 영향

  • 이상동;김혁;한길영;김이곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.659-663
    • /
    • 1995
  • The fiber oriented conditied inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to measure the fiber orientation angel for the determination of molding conditions, mechanical charactistics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine thr accuracy of intersection counting method. The fiber orientation function measured by intersection countingmethod using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the secant line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.