• Title/Summary/Keyword: 섬유 배열방향

Search Result 59, Processing Time 0.028 seconds

Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨 크리프 성능)

  • Park, Han-Min;Kang, Dong-Hyun;Choi, Yoon-Eun;Ahn, Sang-Yeol;Ryu, Hyun-Su;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, to study an effective use and improve strength performances of woods and wood-based materials, three-ply hybrid laminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements used for the core laminae on bending creep performances was investigated. The shape of creep curves showed exponential function plots which the upper right side was increased, and differed among the kinds of wood-based boards used for the core laminae of hybrid laminated wood. The creep deformation perpendicular to the grain of faces of hybrid laminated woods was in order $C_{\perp}$(P) > $C_{\perp}$(M) > $C_{\perp}$(O) with PB, MDF and OSB in the core, respectively. It was found that the creep deformation arranged with OSB in the core had 2 times smaller than those arranged with MDF and PB in the core. By hybrid laminating, the creep deformation of spruce perpendicular to the grain was markedly decreased. On the other hand, the creep deformation parallel to the grain of the faces ($C_{\parallel}$ type) of hybrid laminated woods was in order $C_{\parallel}$(P) > $C_{\parallel}$(O) > $C_{\parallel}$(M) with PB, OSB and MDF in the core. The ratios among three hybrid laminated woods were considerably decreased, especially the difference between $C_{\parallel}$(P) and $C_{\parallel}$(O) hybrid laminated woods arranged with PB and OSB in the core was very small. These values showed 0.108~0.464 times smaller than creep deformation of three wood-based boards and it was found that creep deformation of three wood-based boards was considerably decreased by hybrid laminating. Creep anisotropy of hybrid laminated woods was greater in creep deformation than in initial deformation, whereas it was found that the values was much smaller than that of spruce parallel laminated woods.

Effect of the Alignment of Milled Carbon Fiber Dispersed in Various Solvents (Solvent 별 분산에 따른 Milled Carbon Fiber의 배열성 연구)

  • Lee, Sung-Kwon;Choi, Sung-Woong
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.47-51
    • /
    • 2022
  • In order to efficiently control the heat generation of electronic devices, many research has been conducted on thermally conductive composite materials. In this study, milled carbon fiber was dispersed in four solvent to investigate the relationship of carbon fiber alignment according to dispersion by solvents, and carbon fiberreinforced composite material(CFRP) was manufactured using vacuum filtration. To evaluate the arrangement of CFRP the arrangement of the prepared specimen was observed under an optical microscope, and thermal conductivity was measured by Laser Flash Analysis. The Through-plane thermal conductivity of CFRP using NMP and Ethanol was 10.79 W/mK and 10.57 W/mK respectively, which were improved by 218% and 209% compared to the In-plane thermal conductivity. The high viscosity of the solvent greatly affects the shear of the fluid, and it seemed to determine the alignment of the filler.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 2-Phase Composites (연속섬유가 보강된 2상 복합재료의 종방향 전단계수 해석)

  • Lee, Dong-Ju;Jeong, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2770-2781
    • /
    • 1996
  • Longitudinal shear modulus of continuous fiber reinforced 2-phase composites is predicted by theoretical and numerical analysis methods. In this paper, circular, hexagonal and rectangular shapes of reinforced fiber are considered using unit cell concept. And fiber array is regular rectangular and hexagonal fiber arrangement. Longitudinal shear modulus is a function of fiber distribution pattern and fiber volume change. It is found that the rectangular array has a higher longitudinal shear modulus than the hexagonal one. Also, the rectangular fiber shape in lower fiber volume fraction and the circular fiber shape in higher fiber volume fraction show the higher longitudinal shear modulus. And it has been found that the theoretical and numerical predictions of the longitudinal shear modulus give a good agreement with the experimental data at lower fiber volume fraction. Both the distance and stress transfer between the fibers are discussed as the major determing factors.

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions (2차원 타원형의 충전제를 함유하는 복합재료의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.160-167
    • /
    • 2007
  • This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.

Tribological characteristics of short fiber reinforced composites (단섬유 보강 복합재료의 트라이볼로지 특성)

  • 윤재륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1238-1245
    • /
    • 1988
  • Friction and wear characteristics of short fiber reinforced and particulate filled composites were investigated experimentally. Two kinds of fiber composites, chopped graphite fiber reinforced PAI(polyamide-imide) and glass fiber reinforced PAI, and a particulate composite, TiO$_{2}$ powder filled PAI, were selected for the friction and wear test since these are important engineering materials based on a new high temperature engineering plastic. All the specimens were cut into proper size for cylinder-on-plate type wear test. Frictional forces were measured by employing a load transducer and wear rates were calculated by measuring weight loss during wear test. The experimental results are reported in this paper and carefully discussed to explain the friction and wear behavior qualitatively. The frictional behavior is interpreted by considering four basic friction components which are believed to the genesis of friction and the wear behavior is explained by applying delamination theory of wear.

Prediction Algorithm for Transverse Permeability of Unidirectional Fiber Reinforced Composites with Electric-Hydraulic Analogy (전기-유압 유사성을 활용한 단방향 섬유 강화 복합재료의 수직 방향 투수 계수 예측 알고리즘)

  • Bae, Sang-Yun;Jo, Hyeonseong;Kim, Seong-Su
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.334-339
    • /
    • 2022
  • This study suggests the prediction algorithm for transverse permeability, represented the flow resistance during the manufacturing process of composite, of unidirectional continuous fiber reinforced plastics. The cross-sectional shape of representative volume element (RVE) is considered to reflect fiber arrangement. The equivalent length is used as a factor to express the change of resin flow according to fiber arrangement. The permeability prediction algorithm is created by grafting the Electro-Hydraulic analogy and validity is confirmed. The code for permeability prediction was composed by means of MATLAB and Python, flow analysis was performed by using FLUENT. The algorithm was verified as the permeability results obtained through Algorithm and numerical analysis were almost identical to each other, and the calculation time was reduced around 1/450 compared to the numerical analysis.

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF

Pore Characteristics in Aramid and Simulation Nonwoven Fabrics -through Image Analysis- (아라미드와 시뮬레이션 부직포의 기공 크기에 대한 특성 -이미지 분석을 통한 연구-)

  • 나영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.5
    • /
    • pp.801-810
    • /
    • 1995
  • 부직포의 기공크기에 대한 특성을 측정하기 위해 이미지 프로세싱을 이용하였다. 아라미드부직포와 그 부직포를 시뮬레이션한 부직포에 대해서 기공의 크기를 대표하는 평균 기공크기와 그 분포를 이미지 분석의 두가지 방법으로, 즉, 형태학적인 방법과 기하학적인 방법을 통해 측정해보았다. 아라미드 부직포, 시뮬레이견 부직포이건 상관 없이 부직포의 밀도가 증가함에 따라 기공의 크기특성, 즉 기공의 면적, 수력반경, 그리고 기공내의 최대 내접원의 반경은 감소하였다. 형태학적인 방법과 기하학적인 방법은 부직포의 종류에 상관없이 기공의 크기를 측정함에 있어서 유의한 차이가 없었다. 이는 부직포내의 섬유의 배열방향이 무작위이기 때문이었다. 실제의 아라미드 부직포와 시뮬레이션 부직포의 기공크기에 대한 특성은 서로 비슷한 양상을 보여주었다.

  • PDF

AE Source Location in Anisotropic Plates by Using Nonlinear Analysis (비선형방정식을 이용한 이방성판의 음향방출 위치표정)

  • Lee, Kyung-Joo;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.281-287
    • /
    • 2001
  • For the conventional two-dimensional source location of acoustic emission (AE) based on the threshold crossing, wave velocity has to be measured in the actual structure to calculate the arrival-time difference and thus to form the two hyperbolae. Velocity is dependent on the fiber orientation, however, due to the dependence of elastic modulus on fiber orientation in anisotropic materials such as compost#e plates. This tan affect the accuracy of AE source location and make the source location procedure complicated. In this study, we propose a method to reduce the location error in anisotropic plates by using the numerical solution of nonlinear equations, where the velocity term has been removed by employing the fourth sensor. The efficiency and validity of the proposed method has also been experimentally verified.

  • PDF