• Title/Summary/Keyword: 섬유 개수

Search Result 51, Processing Time 0.023 seconds

Tensile Stress-Strain Relation of ECC (Engineered Cementitious Composite) Accounting for Bridging Curve (실제 균열면응력-변위 곡선을 고려한 ECC의 1축 인장거동 관계)

  • Kim, Jeong-Su;Lee, Bang Yeon;Kwon, Seong-Hee;Kim, Jin-Keun;Kim, Yun Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.933-936
    • /
    • 2008
  • An engineered cementitious composite (Engineered Cementitious Composite) had been developed in previous study. Theoretical prediction of the tensile stress-strain relation of ECC is important in providing the material constitutive relation necessary for designing structural members. But, few studies have been reported with regard to predicting the tensile stress-strain relation of ECC. Prediction of the tensile stress-strain relation of ECC accounting for actual bridging curve, such as fiber dispersion is needed. The present study extends the work as developed by Kanda et al., by modeling the bridging curve, accounting for fiber dispersion, the degree of matrix spalling, and fiber rupture to predict the tensile stress-strain relation of ECC. The role of material variation in the bridging curve, such as number of effective fiber actually involved in the bridging capacity and how it affects the multiple cracking process is discussed. The approach for formulating the tensile stress-strain relation is discussed next, where the procedure for obtaining the necessary parameters, such as the crack spacing, is presented. Finally, the predicted stress-strain relation will be validated with experimental tests results.

  • PDF

Tensile Behavior and Cracking Patterns of Fiber-Reinforced Cementless Composites According to Types of Superplasticizers (고성능 감수제 종류에 따른 섬유보강 무시멘트 복합재료의 인장거동 및 균열 패턴)

  • Park, Se-Eon;Choi, Jeong-Il;Kim, Yun Yong;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.200-207
    • /
    • 2021
  • The purpose of this study is to investigate experimentally the effects of type of superplasticizer on tensile behavior and cracking pattern of alkali-activated slag-based cementless composite. Three mixtures were prepared according to type of superplasticizer, and the compressive strength and tension tests were performed. Test results showed that differences of tensile strength, tensile strain capacity, and toughness of composites were up to 28.1%, 39.1%, and 66.2%, respectively, according to type of superplasticizer, although fiber balling or poor dispersion of fibers in fresh composites was not observed. It was also observed that the type of superplasticizer influenced number of cracks and maximum fiber bridging stress.

Effect of Drift Pin Arrangement for Strength Property of Glulam Connections (드리프트 핀의 배열 형태가 집성재 접합부의 회전 거동 및 강도 성능에 미치는 영향)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.10-21
    • /
    • 2007
  • It is necessary to study about moment performance of glulam-dowel connections which had been applied rotation. To analyze and predict the moment performance, angled to grain load was replaced with parallel to grain load and perpendicular to grain load. The dowel bending strength and dowel bearing strength were tested. And tensile strength test for connections of two different end distances was performed. Specimens of rotation test were composed with different drift pin numbers and drift pin arrangement. Connection deformation was occurred by plastic behavior of drift pin after yield when tensile load applied at connection. And the absorbing drift pin deflection by end distance continued the connection deformation. When rotation applied at connection that 2 drift pins were arranged parallel to grain (b2h), it showed similar performance with tensile perpendicular to grain. And connection that 2 drift pins were arranged perpendicular to grain (b2v) showed similar performance with tensile parallel to grain. Connection capacity that 4 drift pins were arranged rectangular (b4) showed 1.7 times as strong as connection that 2 drift pins were arranged parallel to grain (b2h). These results agreed predicted values and it is available that rotation replaced with tensile load.

Leaf anatomy of Pinus thunbergii Parl. (Pinaceae) collected from different regions of Korea (곰솔의 잎 해부 형태)

  • Ghimire, Balkrishna;Kim, Muyeol;Lee, Jeong-Ho;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • Leaf anatomical study of Pinus thunbergii collected from 12 different coastal regions of Korea was conducted to understand the adaptive variation on leaf traits. Basic anatomical features are typical pine needle type with fibrous epidermis, 2-3 layered hypodermis, sunken stomata, monomorphic mesophyll, and well-represented bundle sheath. The bundle sheath surrounds a couple of vascular bundle separated by parenchyma bands. On the basis of their position, the resin ducts are of three types; external, medial and internal of the bundle sheath. The total number of resin ducts in all samples varies from 4 to 12. The stomata were found on stomatal bands throughout the leaf surface. Important dissimilarities observed on P. thunburgii leaf are the number and position of resin ducts and the number of stomata rows in leaf surface.

Determination of Degraded Properties of Vibrating Laminated Composite Plates for Different Layup Sequences (적층배열 변화에 따른 진동하는 복합재료 적층 구조의 미시역학적 물성변화 추정)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • This paper presents a method to detect the fiber property variation of laminated GFRP plates from natural frequency response data. The combined finite element analysis using ABAQUS and the inverse algorithm described in this paper may allow us not only to detect the deteriorated elements from the mirco-mechanical point of view but also to find their numbers, locations, and the extent of damage. To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. Several numerical results show that the proposed system is computationally efficient in identifying fiber stiffness degradation for complex structures such as composites with various layup sequences.

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Construction of Antibacterial Electrospun Nanofiber from Poly(styrene-co-sulfadiazine) via Electrospinning (폴리(스티렌-설파디아진) 공중합체를 이용한 항균 나노섬유 제조)

  • Hwang, Seok-Ho;Ahn, Kyung-Hwan;Cha, Heechul;Kim, Jeong-Yeol;Hwang, Hong-Gu;Huh, Wansoo;Lee, Sangwon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.386-390
    • /
    • 2009
  • In this study, sulfadiazine acrylamide monomer was synthesized by the reaction of sulfadiazine, known as an antibiotic substance, with acryloyl chloride. The monomer was characterized by $^1H-NMR$, and $^{13}C-NMR$. Using the synthesized sulfadiazine acrylamide monomer and styrene monomer, a copolymer, poly(styrene-co-sulfadiazine), was obtained by the free radical copolymerization and characterized by $^1H-NMR$, GPC, DSC and TGA. The copolymer nanofibers web has been successfully prepared by electrospinning technique under DMF solution. The diameter of the nanofibers was in the range between 500 and 800 nm. Antibacterial activity of the nanofiber web was evaluated utilizing the colony counting method against Staphylococcus aureus and Escherichia coli.

Resistance and Structural Safety of a 3M Carbon Fibier-based Kayak (3미터급 카본 카약의 저항성능 및 구조 안전성 연구)

  • Seo, Kwang-Cheol;Lee, Gyeong-Woo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.482-488
    • /
    • 2019
  • Leisure and business facilities have been steadily developing in Korea. Among waterborne leisure vessels and equipment, the distribution and sale of kayaks and canoes have significantly increased. Previously, (FRP) materials were primarily employed for constructing kayaks. However, owing to global warming and depletion of natural resources, the demand for non-polluting renewable energy is rapidly increasing, which has increased the demand for carbon fibers. To meet the requirements of changing social consciousness, a carbon fiber-based commercial kayak was designed in this study. Resistance analysis and structural safety were conducted by employing software tool for verifying the reliability of the proposed kayak. The pressure resistance and frictional resistance were examined in a wide range of speed. Obtained results indicate that at speeds greater than 2.6 m/s, the pressure resistance significantly increases and the total resistance also increases. Furthermore, the results corroborate that the proposed kayak structure has a adequate safety with respect to the design loads that are considered during operating conditions.

A Preliminary Study on the Medication Management System of the Patients Requiring a Long-term using Textile Proximity Sensor (섬유근접센서를 이용한 장기투약자의 복약 관리 시스템 기초 연구)

  • Im, Do Hwi;Ho, JongGab;Yoo, Su Han;Lee, Yoo Jung;Min, Se Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.883-886
    • /
    • 2016
  • 본 논문에서는 장기투약자의 복약 관리 시스템 개발의 기초 연구로 Textile proximity pressure sensor를 개발하였고, 약통의 무게 감지를 통하여 약의 복용 여부를 판별하는 연구를 수행하였다. 실험은 총 2가지로, 약의 개수에 따른 baseline검출 실험과 약 한알의 무게 도출 실험을 수행하였다. 잡음을 제거하기 위해 5 point의 이동평균필터(MAF: Moving average filter)를 적용하였다. 본 논문을 통해 얻은 결과는 차후 장기 투약이 필요한 환자로 하여금 규칙적으로 약을 복용하도록 하여 만성질환의 완치율을 높이는 데 기여할 수 있을 것으로 판단된다.

Measuring Method of Formaldehyde Emission for Plywood (합판의 포름알데히드방산량 측정방법)

  • Lee, Sang-Min;Park, Jong-Young;Kang, Eun-Chang;Kim, Su-Woun;Han, Seung-Tak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • Unlike other composites boards such as fiberboard and particleboard, plywood is manufactured with sheets of veneers. When the plywood manufactured, the adhesive is spreaded through gluelines on each surface of veneers. For that reason, formaldehyde emission of plywood can be considered as different way. Therefore, this research was conducted to understand the formaldehyde emission pattern of plywood. To measure formaldehyde emission, four different specimen preparing methods were used. The test specimen taken by a total surface area, a given number and a total side area showed inconsistent results. On the other hand, the result of formaldehyde emission showed consistency when considered only the length of adhesive layers.