• Title/Summary/Keyword: 섬유강화

Search Result 1,099, Processing Time 0.432 seconds

A Study on the mechanical Characteristics of Kevlar Plain Weft Knitted Fabrics Reinforced Composites for Development of Intrusion Beam of Car Side Door Application (자동차 사이드 도어용 인트루젼 비임 개발을 위한 케블라섬유강화 복합재료의 기계적 특성에 관한 연구)

  • 이동기
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • Using conventional textile techniques such as weaving braiding knitting and stitching it is possible to produce a wide range two and three dimensional fiber preforms, however so far only a limited attention has been given to knitted fabrics in composite industry. This is mainly due to the opinion that knitted fabric reinforced composites posses low mechanical properties owing to their looped fiber architecture. But it is possible to obtain desired mechanical properties by selecting proper knitted fabric structure, In this paper mechanical characteristics of kevlar plain weft knitted fabrics reinforced plastics(KFRP) are evaluated for th development of intrusion beam of car side door. Tensile bending impact properties of KFRP are measured experimentally and crush demands of Americal Federal Motor Vehicle Safety Standard No.214(FMVSS 214) compared with the bending load and displacement of KFRP by quasi-static test method. The applicability and limitation of bending load and displacement of KFRP according to specimen size has been discussed.

  • PDF

Mechanical Characteristics of Hybrid Fiber Reinforced Composite Rebar (하이브리드 섬유강화 복합재료 리바의 기계적 특성)

  • HAW GIL-YOUNG;AHN DONG-GUE;LEE DONG-GI
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.57-63
    • /
    • 2005
  • The objective of this research is to investigate the mechanical characteristics of the hybrid fiber reinforced composite rebar, which is manufactured from a braidtrusion process. Braidtrusion is a direct composite fabrication technique, utilizing in-line brading and the pultrusion process. hz order to obtain the mechanical behavior of the glass fiber, carbon fiber, and kevlar fiber, the tensile tests are carried out. The results of the fibers are compared with that of steel. Hybrid rebar specimens with various diameters, ranging from model size (3 mm) to full-scale size (9.5 mm), and various cross sections, such as solid and hollow shape, have been manufactured from the braidtrusion process. The tensile and bending tests for the case of the hybrid rebar, the conventional GFRP rebar, and the steel bar have been carried out. The results of the experiments show that the hybrid rebar is superior to the conventional GFRP rebar and the steel bar, from the viewpoint of tensile and bending characteristics.

Characteristics of tool wear in cutting of glass fiber reinforced plastics (유리섬유 강화 플라스틱 절삭시의 공구마멸 특성)

  • 강명순;이원평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1055-1062
    • /
    • 1988
  • The characteristics of tool wear and the machinability in cutting of GFRP have been studied. The wear behavior of carbide insert tools(P20, M10, K10) and Cermet in TiC grade was studied by turning of changing the cutting condition. Machinability could be estimated as the following empirical formula, CT$^{n}$ =W The main results obtained are as follows: (1) Dependence of rate of tool wear on cutting speed; with increases of cutting speed, the rate of tool wear initially increases gradually(1st range), then it increases proportionally to cutting speed(2nd range), and finally the rate is constant(3rd range). (2) When the contact length has a main, effect on tool wear, the cutting speed does nit affect the tool wear. On the contrary, the cutting speed has a main effect on tool wear, the contact length does not affect the tool wear. (3) The order of machinability is K10, M10, P20 and Cermet in TiC grade.

Characteristics of Burst Pressure and Abrasion Resistance of Concrete Hose with Aramid Fiber Reinforcement and Rubber Composition (아라미드 섬유강화 및 고무조성에 따른 콘크리트 도킹호스의 파열압력과 내마모도 특성)

  • Kim, Yong-Hwan;Lee, Seung-Hwan;Sung, Il-Kyung;Lee, Yu-wool;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-110
    • /
    • 2018
  • A concrete docking hose of pump car's boom pipe line have been used in many construction sites. They are long structures with continuous cornering, similar to a trunk of the elephant, characterized by a very high pressure resistance of 20MPa. They need flexible materials and structure in order to move the hose smoothy. But commercial concrete hose is hard to handle and heavy owing to adaption of steel reinforcement. In this study, it is tried an experimental approach to the characteristic of inner rubber layer and abrasion resistance. Also, we are investigated the bursting pressure according to the reinforcement of the hose and propose the usefulness of the hose reinforced with high strengthened aramid fiber.

Compressive Strength of Natural Fiber Reinforced Polymer Composites (천연섬유강화 폴리머 복합재료의 압축강도 특성)

  • Song, Jun-Hee;Mun, Sang-Don;Kim, Yoo-Young;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.140-144
    • /
    • 2010
  • In recent years there has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. The purpose of this study is to determine the characteristic of bending strength on bamboo fiber reinforced polymer composites. The parameters of RTM process depend on the weight ratio of bamboo fiber and resin, the number of bamboo ply and amount of hardening agent. Besides the existence of pore in composites according to vacuum time investigated a effect on mechanical properties of reinforced polymer composites. Test result shows that compressive strength was a maximum(approximately 1,840kgf/$cm^2$) value when weight ratio of resin was 12%.

A Study on Compression Molding Process of Long Fiber Reinforced Plastic Composites -Effect of Needle Punching on Viscosity- (장섬유강화 플라스틱 복합재의 압축성형 공정에 관한 연구 -점도에 미치는 니들펀칭의 영향-)

  • 송기형;조선형;이용신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.184-187
    • /
    • 2002
  • Compression molding was specifically developed for replacement of metal components with composites. As the mechanical properties of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding conditions. In this study, the effects of the fiber mat structure(NP: 5, 10, 25punches/$\textrm{cm}^2$) and the mold closure speed($\dot{\textrm{h}}$=0.1, 1, 10mm/min) on the viscosity of composites were discussed. The composites is treated as a Non-Newtonian power-law fluid. The parallel-plate plastometer is used and the viscosity is obtained from the relationship between the compression load and the thickness of the specimen.

  • PDF

Characteristics of Kevlar-Glass fiber reinforced plastic for Concrete Structure by the Braidtrusion process (브레이드 투루젼법에 의한 콘크리트 구조물용 케블라-유리섬유 강화 복합재료 리바 특성)

  • 최명선;곽상묵;배시연;이동기;심재기;한길영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.48-52
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for Concrete Structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility Characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at Ø3mm and Ø10mm nominal diameters using the braidtrusion process. Tensile and bending specimens from these bars were tested and compared with behavior of stress-strain of steel bar and GFRP rebar

  • PDF

Numerical Analysis of Ultra High Performance Fiber Reinforced Concrete I-beam

  • Han, Sang-Mook;Guo, Yi-Hong;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.817-820
    • /
    • 2008
  • 이 논문은 초고강도 섬유보강 I형 보의 거동을 Diana를 사용하여 3차원 유한요소해석을 수행하였다. 보통 또는 고강도 콘크리트의 구성방정식과 달리 초고강도 섬유보강 콘크리트의 재료적 특성 즉, 인장 변형률 강화를 고려한 탄-소성 파괴 역학적 모델을 제안하여 해석에 반영하였다. 인장영역에서는 인장 변형률 강화를 고려한 다차원 고정 균열 규준을 사용하였고, 압축영역에서는 associated flow rule을 고려한 Drucker-Prager Criterion을 채택하였다. UHPFRC(Ultra-High Performance Fiber Reinforced Concrete) I형 보의 하중변형관계, 최초 균열, 최초 대각 균열, 극한상태 등의 결과를 실험결과와 비교하여 해석법의 유용성을 입증하였다.

  • PDF

Prediction of Fiber Content Distribution of Long Fiber-Reinforced Thermoplastic Sheet for Nonisothermal Compression Molding (장섬유강화 열가소성고분자 복합판의 비등온 압축성형에 있어서 섬유함유율 분포의 예측)

  • 김석호;백남주;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.393-398
    • /
    • 1990
  • A method is proposed which can be used to obtain the fibesr content distribution of compression molded long fiber-reinforced thermoplastic sheet for nonisothermal state. The fiber is modelled to be a sphere. Once the one-dimensional unsteady state heat conduction equation in solved, the mean temperature in defined across the thickness direction. The viscosity of matrix is determined with the mean temperature. Using the obtained viscosity, two-dimensional sheet0like part compression molding is simulated with the finite element method. Comparison with experiments shows that the method accurately predicts the distribution.

분말야금법을 이용한 Ti-Ni 섬유강화 형상기억복합재료 특성에 관한 연구

  • 박민식;윤두표;박영철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.738-742
    • /
    • 1996
  • In the present paper, We have tried to reconfirm the "Interlligent" material properties using both the sintered TiNi/A(1100) matrix composite by powder metallurgy method. By using these specimen, Shape meorystrengthening effect in tensile strengthand fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. More over, by SEM obsevation, the effect of the residual stress at the interface between A1 matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was metallurgically discussed.discussed.

  • PDF