• Title/Summary/Keyword: 섬유강화

Search Result 1,099, Processing Time 0.027 seconds

A Study on the Manufacturing of Hybrid Fiber Reinforced Plastic Rebar Using In-Line Braiding and Pultrusion (라인 브레이딩 펄트루젼을 이용한 하이브리드 섬유강화 복합재료 리바 제작에 관한 연구)

  • 신용욱;한길영;이동기;심재기;오환교
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.57-62
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid. it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and 10mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF

Effect of Fiber Orientation on the Tensile Strength in Long-Fiber Reinforced Polymeric Composites (장섬유강화 고분자 복합재료에서 인장강도에 미치는 섬유배향의 영향)

  • Lee, Dong-Gi;Sim, Jae-Ki;Han, Gil-Young;Kim, Hyuk;Kim, Jin-Woo;Lee, Jung-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.55-60
    • /
    • 2003
  • Case that long-fiber reinforced polymeric composites of fiber orientation situation of a direction state is J=1 that is direction of tensile strength of another state appeared highest. And theoretical tensile strength value of long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state appeared similarly with tensile strength value that long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state. Also, than case that efficiency of fiber orientation situation of long-fiber reinforced polymeric composites is J=1 in it is J=0.1 of fiber orientation situation effect of long-fiber reinforced polymeric composites about 60% high appear.

  • PDF

A Study on the high-velocity impact resistance of fiber reinforced metal laminate materials (섬유강화 금속 적층 재료의 고속 충격 저항성에 관한 연구)

  • 손세원;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1378-1381
    • /
    • 2003
  • Recently, high-performance composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured fiber reinforced metal laminate materials are composed of two parts. One is hard-anodized A15083-O alloy as a face material and the other is high strength aramid fiber (Twaron CT709) and polyethylene fiber(Dyneema HB25) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit(V$\sub$50/, a static velocity with 50% probability for complete penetration) test method. V$\sub$50/ tests with 0$^{\circ}$ obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow (층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석)

  • 최형집;오준성;이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

A study on the Long Fiber Reinforced Nylon6/PPS Composites (장섬유강화 Nylon6/PPS 복합재료에 관한연구)

  • 윤병선
    • The Korean Journal of Rheology
    • /
    • v.8 no.2
    • /
    • pp.69-77
    • /
    • 1996
  • 장섬유강화 열가소성 고분자 복합재료 (FRTP)의 난연성과 개선을 위하여 polyhenylene sulfide(PPS)를 첨가한 polyamide 6(PA6)/glass fiber (GF)의 FRTR를 제조하 였다. 고점성수지내에 보강섬유를 균일하게 분산시키고 함침성을 높임과 동시에 보강섬유의 손상을 방지하기 위하여 섬유상 수지와 보강섬유를 분섬비동장치에서 직접혼방시키고 이를 압축성형하는 독특한 공정을 도입하였다. 제조된 복합재료의 유변학적 특성 형태학적특성 인장 및 충격특성 열적특성, 난연성, 내약품성에 관한연구를 수행한 결과 복합재료와 기계적 특성을 약화시키지 않으면서도 난연성가 내약품성을 현격히 향상시킬수 있는 FRTP의 제조 가 가능함을 확인하였다.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • Park Sung-Oan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.64-73
    • /
    • 2004
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

Vibration Control of Cantilevered Structures Laminated of fiber-reinforced Composite Materials (섬유강화 복합재료 적층 구조물 (외팔보형태)의 면진 및 제진)

  • 오동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.67-72
    • /
    • 1995
  • 본 연구에서는 섬유강화 복합재료로 구성된 항공기 날개를 외팔보 형태 구조물로 모델링하고 동특성 해석을 위해 횡전단변형 이론과 고전 적층판 이론을 적용, Rayleigh-Ritz 방법에 의한 진동해석을 수행한뒤 진동 발생시 효과적으로 제어할 수 있는 방법을 제시하고 시뮬레이션을 통하여 동특성 향상을 정량적으로 제시하였다. 진동을 제어하기 위한 방법으로서 수동적, 능동적 방법을 모두 사용하고 있는데, (보다 자세한 사항은 참고문헌[12] 참조) 본 연구에서는 TMD(Tuned Mass Damper)를 사용하지 않고 복합소재 구조물의 성질을 이용한 탄성배열설계(Structural Tailoring)로 수동적 의미의 면진효과를 거둘 수 있게 하였다. 능동 제어의 경우 되먹임(feedback) 제어기를 이용, 이산(discret) 작동기(actuator)를 통하여 외팔보의 휨 및 비틀림 모우드를 함께 제어하여 효과적인 제어기를 설계하였다.

  • PDF

Deformation Analysis for Compression Molding of Polymeric Composites with Random/ Unidirectional Fiber-reinforced laminates (무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합판재의 압축변형 해석)

  • 조선형
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.188-194
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin. lightweight. strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. This study analyzes numerically the characteristics of flow fronts such as a bulging phenomenon made by changing viscosity of random mat and unidirectional fiber mat and slip parameters. And it is discussed that the effect of ratio of viscosity A and stack type on mold filling parameters

  • PDF

Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics (손상역학을 이용한 섬유강화 복합재료의 피로해석)

  • Lim Dong-Min;Yoon Ihn-Soo;Kang Ki-Weon;Kim Jung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.