• Title/Summary/Keyword: 섬유강화복합재료

Search Result 653, Processing Time 0.033 seconds

Study on the Durability of Fiber Reinforced Composites (섬유강화 복합재료의 내구성에 관한 연구)

  • Kim, Je-Heon;Mun, Chang-Gwon
    • Korean Journal of Materials Research
    • /
    • v.7 no.5
    • /
    • pp.434-443
    • /
    • 1997
  • 유리섬유와 에폭시 수지와의 계면전단강도에 미치는 수분흡수, 섬유직경 및 섬유의표면상태 등의 영향을 검토하기 위해서 two fiber fragmentation 시험법을 사용하였다. 그리고 유리섬유/에폭시 수지의 일방향 복합재료에서 수분흡수가 복합재료의 기계적 성질에 미치는 영향에 대해서도 검토하였다. 그 결과, two fiber fragmentation시험에서 계면전단강도는 수분흡수량 및 섬유직경이 클수록 작게 나타났으며, sizing한 것이 desizing한 것보다 크게 나타났다. 또 수분흡습에 의해 감소되었던 계면전단강도는 건조에 의해서 처음의 값의 약 50-60%까지 회복됨을 나타내었다. 그리고 일방향 복합재료의 인장강도는 수분흡수량이 증가함에 따라 현저히 감소함을 보였다.

  • PDF

Interfacial Damage Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Fiber-Embedded Angle using Electro-Micromechanical Technique (Electro-Micromechanical시험법을 이용한 섬유 함침 각에 따른 탄소와 SiC 섬유강화 에폭시 복합재료의 계면 손상 감지능 및 평가)

  • Joung-Man Park;Sang-Il Lee;Jin-Woo Kong;Tae-Wook Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.68-73
    • /
    • 2003
  • Interfacial properties and electrical sensing fer fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, the interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time takes long until the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique could be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF

Influence of Alkali or Silane Treatment of Waste Wool Fiber on the Mechanical Properties and Impact Strength of Waste Wool/Polypropylene Composites (폐양모/폴리프로필렌 복합재료의 기계적 특성 및 충격강도에 미치는 폐양모섬유의 알칼리처리 또는 실란처리 영향)

  • Kim, Kihyun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.118-126
    • /
    • 2017
  • In a natural fiber-reinforced composite material, many studies have been devoted to improving the interfacial adhesion between natural fiber and polymer matrix and the composite properties through various fiber surface modifications. In the present study, waste wool-reinforced polypropylene matrix composites were fabricated by compression molding and their mechanical and impact properties were characterized. As a result, the tensile and flexural properties and the impact strength of waste wool/polypropylene composites strongly depended on the treatment medium, alkali treatment with sodium hydroxide (NaOH) and silane treatment with 3-glycidylpropylsilane(GPS). The composite with waste wool by silane treatment exhibited higher mechanical properties and impact resistance than that by alkali treatment. The fracture surfaces of the composites support qualitatively the increased properties, showing the improved interfacial bonding between the waste wool and the polypropylene matrix.

A Study on the Fatigue Behavior of ARALL and Manufacturing of ARALL Materials (ARALL재의 개발과 이의 피로파괴거동에 관한 연구)

  • Jang, Jeong-Won;Sohn, Se-Won;Lee, Doo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.13-18
    • /
    • 1999
  • 섬유강화금속적층재(Fiber Reinforced Metal Laminates. FRMLs)는 고강도금속과 섬유강화복합재료(Fiber Reinforced Composite Materials)를 적층한 새로운 종류의 하이브리드 재료이다. 국산 아라미드 섬유인 헤라크론(Heracron, 코오롱)과 국내 복합재료 제작기술(한국화이바)을 사용하여 섬유강화금속적층재를 제작하고, 이를 HERALL(Heracron Reinforced Aluminum Laminate)이라 명명하였다. HERALL(Heracron Reinforced Aluminum Laminate)의 피로균열성장특성 및 피로균열진전 방해기구를 ARALL(Aramid-fiber Reinforced Aluminum alloy Laminates) 및 Al 2024-T3과 비교해석하였다. HERALL과 ARALL은 균열진전을 저지하는 아라미드 섬유로 인해 뛰어난 피로균열성장특성 및 피로저항성을 보여주었다. 아라미드 섬유의 균열브리드징으로 인한 $K_{max}$의 감소량과 Al 2024-T3의 균열닫힘으로 인한 $K_{max}$의 증가량을 구할 수 있는 응력-COD법을 사용하여 실제로 균열성장에 영향을 준 유효응력확대계수범위를 측정하였다. 균열선단으로부터 균열을 가공하면서 COD 변화량을 측정하여 균열브리징 영역을 구하였다.

  • PDF

Analysis of Thermal Conductivities of Carbon/Phenolic and Silica/Phenolic Ablative Composites by Laser Pulse Method (레이저 섬광법을 이용한 Carbon/Phenolic 및 Silica/Phenolic 내열복합재료의 열전도도 분석)

  • Kim, H.Y.;Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.75-83
    • /
    • 1999
  • The thermal properties of carbon/phenolic and silica/phenolic ablative composites were investigated by measuring the heat capacity, thermal diffusivity and thermal conductivity. The heat capacities of carbon/ phenolic and silica/phenolic composites were calculated from differential scanning calorimeter curve. The thermal diffusivities of carbon/phenolic and silica/phenolic composites were measured by the laser flash method with varying laminated direction, i.e., with laminar direction and across laminar direction. The thermal diffusivities decreased with increasing temperature. The thermal conductivities of carbon/phenolic and silica/phenolic composites were calculated using the heat capacity, density and thermal diffusivity. The thermal conductivities increased with increasing temperature. The thermal conductivity of with laminar direction is two times higher than that of across-laminar direction in carbon/phenolic composite due to the directionality of thermal conductivity of carbon fiber. The thermal conductivities of two dimensional fiber reinforced composites were analyzed using the conductivities of constituents and volume fraction of each constituent. The thermal conductivities of carbon fiber and silica fiber were calculated from thermal conductivities of carbon/phenolic and silica/phenolic composites. The thermal conductivities of carbon/phenolic and silica/phenolic composites at RT were predicted from thermal conductivities of fiber and resin with varying the volume fraction of fiber.

  • PDF

방탄재료의 경방탄 특성에 관한 연구

  • 손세원;유명재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.94-94
    • /
    • 2004
  • 고성능 섬유강화 복합재료는 단위 중량당 강성과 강도가 높으면서 가격도 저렴하여 여러 산업분야에서 널리 사용되고 있으며 특히, 경량임에도 충격에 대한 저항성이 우수하여 방탄재료로의 군사적, 민간용 이용도가 날로 증가되고 있다. 그러나 고속 충격 탄자와 같이 관통성이 뛰어난 위협 조건으로부터의 방호를 목적으로 장갑을 설계할 매는 단일 재료만으로는 충분한 방탄 성능을 가질 수 없는 경우가 많다. 이런 경우는 충격 전면에서 충격 탄자의 탄두를 일차적으로 무디게 하거나 파쇄시켜 탄자의 형상을 변화시키고, 변형된 탄자의 계속적인 관통에 대한 저항능력이 우수한 재료를 사용하여 두가지 성질을 동시에 만족시키는 장갑재료의 개발이 요구되고 꾸준히 연구되어 왔다.(중략)

  • PDF

A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites (탄소섬유 강화 PA6/PPO 복합재료의 섬유 배향에 따른 충격강도 및 열팽창 거동에 관한 연구)

  • Won, Hee-Jeong;Seong, Dong-Gi;Lee, Jin-Woo;Um, Moon-Kwang
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Short fiber reinforced composites manufactured by injection molding have diverse fiber orientations variable with measuring positions even in the same specimen, which is caused by the flow induced fiber orientation. Fiber orientations considerably affect the mechanical and thermal properties of final composite products. In this study, fiber orientation of injection molded carbon fiber reinforced PA6/PPO composite was measured at several points of the specimen by optical microscopy analysis and the corresponding izod impact strength, coefficients of thermal expansion (CTE) were also measured to investigate the influence of local fiber orientation on the mechanical and thermal properties. Izod impact strength where fiber was perpendicular to the direction of crack propagation was higher than where fiber was parallel to the direction, which could be explained be the impact resistance reinforcing mechanism by fiber orientation. CTE was also lower where fiber was parallel to the measurement direction of CTE than where fiber was perpendicular to the direction, which could be also explained by the dimensional stability mechanism by fiber orientation.

Design and Fabrication of Semi-cylindrical Radar Absorbing Structure using Fiber-reinforced Composites (섬유강화 복합재료를 이용한 반원통형 전자파 흡수구조의 설계 및 제작)

  • Jang, Hong-Kyu;Shin, Jae-Hwan;Kim, Chun-Gon;Shin, Sang-Hun;Kim, Jin-Bong
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • The stealth technology can increase the survivability of aircrafts or warships and enhance the capability of mission completion in hostile territory. The purpose of this paper is to present the low observable structure with curved surfaces made by fiber-reinforced composites and to show the possibility of developing omnidirectional stealth platforms for military applications. In this study, we developed a radar absorbing structures(RAS) based on a circuit analog absorber to reduce the radar cross section(RCS) of an object with curved surfaces. Firstly, the RAS with a periodic square patterned conducting polymer layer was designed and simulated using a commercial 3-D electromagnetic field analysis program. Secondly, the designed semi-cylindrical structure with low RCS was fabricated using fiber-reinforced composites and conducting polymer. To make the periodic pattern layer, acts as resistive sheet, the intrinsic conducting polymer paste containing PEDOT with a polyurethane binder was used. Finally, the radar cross section was measured to evaluate the radar absorbing performances of the fabricated RAS by the compact range facility in POSTECH.

Impact Properties of Organic Fiber Reinforced Thermoplastic Composites (유기섬유강화 열가소성고분자 복합재료의 충격특성)

  • Im, Seung-Soon;Lee, Seung-Bae;Lee, Yong-Moo;Choi, Hyeong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.424-432
    • /
    • 1996
  • The fiber reinforced thermoplastic composites(FRTP) were prepared with polypropylene fiber(PPF) as matrix and vinylon(VF), Aramid(KF) or nylon fiber(PAF) as reinforcing materials using the integrated fiber mixing apparatus. The composite sheets were prepared by compression molding and their impact and morphological properties were characterized. VF/PP system showed the maximum value in Izod impact strength, while KF/PP system showed the maximum value in high rate impact properties. Ductility Index(DI) order was VF/PP>KF/PP>PAF/PP. A maximum DI for VF/PP, 2.43, was obtained when the weight fraction of VF was 20%. The optimum amount of the reinforcing organic fiber was found to be 20~30%. As a result, it is concluded that VF/PP system has better interfacial adhesion properties than either KF/PP or PAF/PP.

  • PDF