소동물용 양전자방출단층촬영기기는 매우 작은 장기를 영상화하기 위해 매우 높은 공간분해능을 지닌다. 우수한 공간분해능을 획득하기 위해서는 매우 작은 섬광 픽셀을 사용하여 시스템을 구성해야 한다. 매우 작은 섬광 픽셀을 사용하여 검출기를 구성할 경우 광센서 픽셀에 따라 적용가능한 배열의 크기가 달라진다. 이전 연구에서 광센서 크기에 따른 최대의 섬광 픽셀 배열을 찾는 연구를 수행하였다. 본 연구에서는 더 확장된 섬광 픽셀 배열을 사용하여 검출기를 구성하기 위해 광가이드를 적용한 검출기를 설계하여 모든 섬광 픽셀들이 영상화되는 최대의 배열을 찾고자 한다. 섬광체로 이루어진 검출기의 시뮬레이션이 가능한 DETECT2000을 사용하여 검출기를 설계하였다. 11 × 11 섬광 픽셀 배열에서부터 16 × 16 배열까지 검출기를 구성하여 시뮬레이션을 수행하였다. 섬광 픽셀에서 발생된 빛을 광센서로 수집하여 평면 영상을 획득한 후 영상의 분석을 통해 겹침이 발생하지 않는 최대의 배열을 찾았다. 그 결과 겹침이 발생하지 않고 모든 섬광 픽셀들이 구분 가능한 최대의 배열은 15 × 15 배열이었다.
적은 수의 광센서를 사용한 PET 검출기의 섬광 픽셀과 광센서의 매칭 비율을 최대화하기 위해 다양한 섬광 픽셀의 배열과 4개의 광센서를 사용하였다. 섬광 픽셀의 배열은 6 × 6에서부터 11 × 11까지 여섯 케이스로 구성하였다. 광센서간의 간격은 모든 섬광 픽셀에서 동일하게 적용하였으며, 섬광 픽셀의 크기를 줄여 배열을 확장하였다. 설계한 PET 검출기들의 평면 영상 획득을 위해 빛 시뮬레이션이 가능한 DETECT 2000을 사용하였다. 각 섬광 픽셀 배열의 중심에서 소멸방사선과 섬광 픽셀의 상호작용을 통해 생성된 빛을 발생시켜, 4개의 광센서를 통해 빛을 검출한 후 평면 영상을 재구성하였다. 재구성한 평면 영상을 통해 모든 섬광 픽셀들이 구분이 가능한 최대의 배열을 찾았다. 그 결과 8 × 8 섬광 픽셀 배열의 평면 영상에서 모든 섬광 픽셀들이 구분이 가능하였으며, 9 × 9 섬광 픽셀 평면 영상에서부터는 가장자리 두 섬광 픽셀들이 서로 겹쳐 영상에 나타났다. 이때의 섬광 픽셀과 광센서의 매칭 비율은 16:1이었다. 본 검출기를 사용하여 PET 시스템을 구성할 경우, 사용하는 광센서의 수가 감소되고 이에 따른 신호처리 회로의 간소화를 통해 전체 시스템의 비용을 감소시킬 것으로 기대된다.
전임상용 양전자방출단층촬영기기는 관심 시야 외곽에서의 공간분해능 저하현상이 발생한다. 이를 해결하기 위해 감마선과 섬광체가 상호작용한 위치를 측정하는 반응 깊이 측정(depth of interaction, DOI) 검출기가 개발되었다. 여러 층으로 섬광 픽셀 배열을 구성한 방법, 하나의 층의 양단에 광센서를 배치한 방법, 여러 층으로 섬광 픽셀 배열을 구성하고 각 층마다 광센서를 배치한 방법 등이 있다. 본 연구에서는 기존에 개발된 검출기들의 특징을 분석하여 새로운 형태의 DOI 검출기를 설계하였다. 두층으로 구성된 검출기는 각 층마다 서로 다른 크기의 섬광 픽셀을 사용하여, 배열의 크기를 다르게 구성하였다. 이러한 형태로 구성할 경우 층별 섬광 픽셀의 위치는 서로 어긋나게 배열되어 평면 영상에서 서로 다른 위치에 영상화된다. 설계한 검출기의 반응 깊이 측정 가능성을 확인하기위해 DETECT2000 시뮬레이션을 수행하였다. 각 섬광 픽셀의 중심에서 발생된 감마선 이벤트로 획득한 빛의 신호로 평면 영상을 재구성하였다. 그 결과 각 층별 모든 섬광 픽셀이 재구성된 평면 영상에서 분리되어 영상화되어, 반응 깊이를 측정할 수 있음을 확인할 수 있었다. 본 검출기를 전임상용 PET에 적용할 경우 공간분해능의 향상을 이루어 우수한 영상을 획득할 수 있을 것으로 사료된다.
전임상용 양전자방출단층촬영기기는 인체에 비해 매우 작은 소동물을 대상으로 촬영이 이루어지므로, 우수한 공간분해능을 지닌 검출기가 필요하다. 이를 위해 작은 섬광 픽셀을 사용한 검출기를 사용하여 시스템을 구성하였다. 현재 개발되어 사용되는 광센서의 크기는 한정되어 있으므로, 이에 맞는 최소한의 섬광 픽셀과 최대의 배열로 구성할 경우 우수한 공간분해능을 얻을 수 있다. 본 연구에서는 광센서의 크기를 고정하고, 이에 맞는 다양한 섬광 픽셀의 배열을 구성하여 평면 영상에서 겹침이 발생하지 않고, 모든 섬광 픽셀들이 구분이 되는 최대의 섬광 픽셀 배열을 찾고자 한다. 이를 위해 섬광체와 광센서로 이루어진 검출기 모듈의 시뮬레이션이 가능한 DETECT2000을 사용하였다. 3 mm × 3 mm 픽셀이 4 × 4 배열로 이루어진 광센서를 사용하였으며, 섬광 픽셀 배열은 8 × 8에서부터 13 × 13까지 구성하여 시뮬레이션을 수행하였다. 광센서 픽셀에서 획득된 데이터를 통해 평면 영상을 구성하였으며, 평면 영상과 프로파일을 통해 영상의 겹침이 발생하지 않는 최대의 섬광 픽셀 배열을 찾았다. 그 결과 평면 영상에서 서로 겹침이 발생하지 않고 모든 섬광 픽셀들이 영상화되는 섬광 픽셀 배열의 크기는 11 × 11이었다.
소동물용 양전자방출단층촬영기기(positron emission tomography, PET)의 고분해능과 고민감도를 달성하기 위해 매우 가늘고 긴 섬광 픽셀을 사용하여 검출기를 구성한다. 이러한 섬광 픽셀의 구조로 인해 시스템의 관심 시야 외곽에서 공간분해능 저하 현상이 발생한다. 이를 해결하기 위해 반응 깊이를 측정하여 공간분해능을 향상시키고, 준블록 섬광체를 사용하여 민감도를 향상시킬 수 있는 검출기를 설계하였다. 12.6 mm x 12.6 mm x 3 mm 크기의 준블록 섬광체를 네 층으로 배열하고, 모든 옆면에 광센서를 배치하여 감마선과 섬광체가 상호작용하여 발생된 빛을 수집하도록 설계하였다. 설계한 검출기의 성능 평가를 위해 DETECT2000 시뮬레이션을 수행하였다. 각 층별 섬광체 내에서 1.3 mm부터 11.3 mm까지 1 mm 간격으로 감마선 이벤트를 발생시켜 평면 영상을 획득하였다. 11 x 11 배열의 평면 영상에서 각 위치별 공간분해능과 피크 간 거리를 측정하였다. 측정된 공간분해능의 평균은 0.25 mm였으며, 피크 간 거리의 평균은 1.0 mm였다. 이를 통해 모든 위치가 서로 분리됨을 확인할 수 있었다. 또한 모든 층은 빛의 신호가 서로 분리되어 측정되므로 감마선과 상호작용한 섬광체의 층을 완벽히 분리해낼 수 있었다. 설계한 검출기를 소동물용 PET 시스템의 검출기로 사용할 경우, 우수한 공간분해능과 민감도를 달성하여 영상의 질을 향상시킬 수 있을 것으로 판단된다.
양전자방출단층촬영기기(positron emission tomography, PET)의 공간분해능 향상을 위한 반응 깊이를 측정하는 검출기를 설계하였다. 섬광 픽셀 배열이 두 층으로 구성되며, 층 사이에는 감마선 이벤트를 통해 발생된 빛을 각 층별 서로 다른 분포로 만들기 위해 광가이드를 삽입하였다. 광가이드는 4개로 구성되며 하나의 광가이드는 2 × 2 배열의 섬광 픽셀과 연결되도록 설계하였다. 위층에서 발생된 빛은 광가이드를 통해서 더 넓은 분포로 광센서로 이동되며, 아래층에서 발생된 빛은 위층보다 좁은 분포로 광센서에 입사한다. 서로 다른 분포에 의해 광센서에서 획득되는 신호를 바탕으로 평면 영상을 재구성하면 층별 서로 다른 위치에 섬광 픽셀이 영상화된다. 이를 검증하기위해 섬광체내에서 빛의 거동을 모사하는 DETECT2000 시뮬레이션 툴을 사용하였다. 섬광 픽셀 배열과 광가이드 및 광센서로 이루어진 검출기를 설계하여, 모든 섬광 픽셀에서 감마선 이벤트를 발생시켜 평면 영상을 획득하였다. 그 결과 위층과 아래층은 서로 다른 위치에서 영상화되었으며, 완벽히 구별되는 것을 확인할 수 있었다. 본 검출기를 PET에 적용할 경우 보다 향상된 공간분해능을 통해 영상의 질을 향상시킬 수 있을 것으로 판단된다.
우수한 공간분해능을 달성하기 위해 소동물용 양전자방출단층촬영기기의 검출기에는 매우 작은 섬광 픽셀을 사용한다. 그러나 이러한 매우 작은 섬광 픽셀을 사용함으로써 배열의 가장자리 부분의 섬광 픽셀들이 평면 영상에서 중첩되는 현상이 발생할 수 있다. 이를 해결하기 위해 빛의 분포를 변화시킬 수 있는 광가이드를 사용하였다. 광가이드의 물질에 따라 빛이 퍼지는 경향이 달라지며, 이에 따라 어떠한 물질의 광가이드를 사용하느냐에 따라 겹침의 발생 유무가 달라진다. 본 연구에서는 기존의 유리 광가이드를 대신하여 섬광 픽셀과 동일한 물질의 광가이드를 적용한 검출기를 설계하였다. 섬광체 광가이드는 유리 광가이드에 비해 더 높은 굴절률을 지녀, 빛의 퍼지는 정도가 달라진다. 두 광가이드를 사용한 검출기의 가장자리 부분의 섬광 픽셀들의 분리 정도를 평가하기 위해 평면 영상을 획득하였다. 획득한 평면 영상의 가장자리 두 섬광 픽셀 영상의 공간분해능과 중심 간의 거리를 산출하여, 분리 정도를 평가하였다. 그 결과 섬광체 광가이드를 사용하였을 경우, 더 우수한 공간분해능을 보였으며, 섬광 픽셀들의 중심 간의 거리가 더 넓게 나타났다. 기존에 사용하는 유리 광가이드 대신에 섬광체 광가이드를 사용하여 검출기를 구성할 경우 더 작은 섬광 픽셀을 사용할 수 있으므로, 더 우수한 공간분해능을 확보할 수 있을 것이다.
이 연구의 목적은 몬테칼로 모사방법을 이용하여 배열형 CsI 섬광결정을 가진 소형 감마카메라의 평행구멍형 조준기를 최적화하고 조준기 부착시 발생할 수 있는 결합오차가 영상의 질에 미치는 영향을 평가하는 것이다. GATE 코드를 이용하여 육각형과 사각형 평행구멍형 조준기의 구멍크기에 따른 Tc-99m 점선원 영상의 민감도 및 공간분해능을 측정하고 최적화된 조준기를 바탕으로 조준기와 섬광체 사이에 2 mm 이내의 미세한 틈이 있을 경우에 대한 평판선원의 영상 균일도를 측정하였다. 동일 구멍크기에 대해 사각구멍형 조준기가 육각구멍형 조준기에 비해 민감도가 우수한 결과를 보였으며, 섬광결정과 사각구멍조준기의 크기를 1 대 4로 일치시켰을 때, 선원의 거리에 따른 공간분해능의 변화가 가장 적은 것을 알 수 있었다. 조준기와 검출기의 결합면 평행오차는 영상의 균일도와 민감도 모두를 선형적으로 감소시키는 경향을 보였다. 이 연구 결과는 배열형 섬광결정과 단일 섬광결정에 대해 조준기의 성능차이를 보이고, 영상의 균일도 및 민감도 저하의 원인이 조준기의 결합오차에서 기인할 수 있음을 증명함으로써, 핵의학 영상 화질 개선을 위한 새로운 접근법을 제시한다.
PET 검출기에서 매우 우수한 공간분해능을 획득하기 위해, 매우 작은 섬광 픽셀을 사용하여 검출기 모듈을 설계할 경우, 평면 영상에서 섬광 픽셀 배열 가장자리 및 모서리 부분에서의 겹침이 발생한다. 광가이드를 사용함으로써 겹침의 발생을 감소시킬 수 있다. 본 연구에서는 0.8 mm × 0.8 mm × 20 mm의 섬광체를 사용하여 14 × 14 배열로 구성한 후, 3 mm × 3 mm의 SiPM 픽셀이 4 × 4 배열로 구성된 광센서와 조합하고, 겹침의 발생을 감소시키기 위해 사용한 광가이드의 최적의 두께를 도출하였다. 획득한 평면 영상에서 겹침이 주로 발생하는 가장자리 및 모서리 위치의 섬광 픽셀 영상을 바탕으로 정량적 평가를 수행하였다. 정량적 평가는 섬광 픽셀 영상간의 간격과 반치폭을 통해 계산되었으며, 2 mm 두께의 광가이드를 사용하였을 경우 k값이 2.60으로 가장 우수한 영상을 획득한 결과를 보였다. 또한 에너지 스펙트럼을 통해 에너지 분해능을 측정한 결과 2 mm 두께의 광가이드에서 28.5%로 가장 우수한 결과를 나타내었다. 2 mm의 광가이드를 사용할 경우 겹침이 최소화된 가장 우수한 평면 영상과 에너지 분해능을 획득할 수 있을 것으로 판단된다.
양성자 치료 시 양성자 빔의 특성을 이용하여 치료 부위에 국부적인 선량을 부여하고 정상조직에 불필요한 선량을 줄이기 위해서는 인체 내 양성자 빔의 비정을 실시간으로 확인하는 것이 중요하다. 이를 위해 본 연구팀은 24개의 섬광검출기 배열 및 24채널의 신호 처리 시스템으로 구성된 즉발감마선 카메라 모듈을 개발하고 있다. 본 연구에서는 다채널의 섬광 검출기 신호를 처리하기 위하여 이중모드 다채널 신호 처리 모듈을 개발하여 그 성능을 평가해보았다. 성능을 평가한 결과 에너지 교정 모드를 통해 다채널의 섬광검출기에 대하여 동시에 에너지 교정이 가능함을 확인하였고, 이를 통하여 정확하게 3 MeV에 해당하는 측정 하한 값을 결정할 수 있었다. 고속 데이터 획득 모드를 통해 45 MeV 양성자 빔에서 발생한 즉발감마선 분포를 측정한 결과 $3{\times}10^9$개의 양성자 빔에서도 양성자 선량 분포와 유사한 결과를 얻을 수 있었고, 빔 비정을 평가한 결과 $17.13{\pm}0.76mm$로 EBT film을 통하여 측정한 비정인 16.15 mm와 굉장히 밀접한 관련이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.