• Title/Summary/Keyword: 설계 응답스펙트럼

Search Result 243, Processing Time 0.02 seconds

A Study on the Applicability of Arias Intensity Liquefaction Assessment (Arias Intensity 액상화 평가기법의 적용성에 관한 연구)

  • Hwang, Jungtae;Lee, Jongkeun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.13-19
    • /
    • 2013
  • In this study, the target ground was selected for the assessment of liquefaction, for which energy-based Arias intensity liquefaction assessment method was applied, The results of evaluation by simplified method using conventional in-situ test were compared. The result of the assessment of liquefaction revealed that the safety factor of the Arias Intensity using the actual records of the Hachinohe and Ofunato earthquake showed generally similar trends with the simplified method, However, the Arias Intensity factor of safety for the artificial earthquake created from the design response spectrum showed some difference from the factors of safety of the simplified method. The shear stress ratio and the occurrence strength of the Arias Intensity are differently calculated between stress and energy, but the resistance stress ratio of the simplified method and the resistance strength of the Arias Intensity use the empirical chart of the results of the standard penetration test for the actual liquefaction areas by the earthquake, which seems the reason for the similar results between Arias Intensity assessment and stress concept simplified method for Hachinohe and Ofunato earthquakes. Therefore, it was found that the energy-based Arias Intensity liquefaction assessment could represent the dynamic changes of the ground caused by seismic characteristics such as acceleration, magnitude, duration and amplitude.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

A preliminary numerical analysis on the behaviour of tunnel under construction in fracture zone considering seismic load (지진 하중을 고려한 단층파쇄대에서의 시공 중 터널 거동 분석에 관한 수치해석적 연구)

  • Oh, Dong-Wook;Hong, Soon-Kyo;Kim, Dae-Kon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.279-299
    • /
    • 2019
  • Recently occurred earthquake Gyeongju and Pohang served as a momentum to remind that Korean peninsular is not a safety zone from earthquake anymore. The importance of seismic design, therefore, have been realized and researches regarding design response spectrum have been actively carried out by many researchers and engineers. Current tunnel seismic design method is conducted to check safety of tunnel structure by dynamic numerical analysis with condition of completed lining installation, so, it is impossible to consider safety of tunnel behavior under construction. In this study, therefore, dynamic numerical analysis considering seismic wave propagations has been performed after back analysis using results from field monitoring of tunnel under construction in fractured zone and 1st reinforcement (shotcrete, rockbolt) behaviour are analyzed. Waves are classified by period characteristic (short and long). As a result, the difference depending on period characteristic is minor, and increasements of displacement are obtained at crown displacement due to seismic wave is 28~31%, 14~16% at left side of tunnel in the fractured zone, 13~27% at right side of tunnel in the bed rock, respectively. In case of shotcrete axial force is increased 113~115% at tunnel crown, 102% at left side, 106~110% at right side, respectively. Displacement and axial force of rockbolts which are selected by type of anchored grounds (only fractured zone, fractured zone and bed rock, only bedrock) are analyzed, as a result, rockbolt which is anchored to fractured zone and bed rock at the same time are weaker than any other case.