• Title/Summary/Keyword: 설계 길이

Search Result 3,415, Processing Time 0.033 seconds

A Study on Design Area of Fire Sprinkler System (스프링클러설비의 설계면적에 대한 연구)

  • Jeong, Kee-Sin
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.93-98
    • /
    • 2010
  • Even though the sprinkler system is a essential fire suppression system, the design engineers do not fully understand the concept of design area which sprinklers operate. They frequently made a mistake to form design area and calculate it. The shape of design area is a square or a rectangle which branch side line is a little longer than the cross main side. NFPA demands to lengthen the branch side to 1.2 times than the cross main side and FM demands 1.4 times. The longer the branch side at the same design area is, the bigger the water quantity and pressure is. At the results of hydraulic calculation of design areas, when the branch side is longer 1.2 times, the water quantity became 4.6% bigger than exact square and the pressure came to 4.67% bigger. When it is longer 1.4 times, the water quantity and the pressure are bigger 7.52%, 14.51%. Therefore, the sprinkler design engineers should follow the general rule of design area, exact square or rectangle which length along the branch line is a little longer than length along the cross main, to design more stable system.

Design of a Miniaturized Antenna for GPS using T-Shaped Slit (T자형 슬릿 구조를 이용한 GPS용 소형 안테나 설계)

  • Lee, Jong-Min;Seo, Jeong-Sik;Woo, Jong-Myung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.546-549
    • /
    • 2003
  • 본 논문에서는 GPS용 안테나의 소형화를 위해 패치 길이 방향으로 T자형 슬릿 구조를 이용하여 GPS 중심 주파수인 1.575 GHz로 안테나를 설계, 제작하였다. 선형편파의 경우, 설계 주파수에서 패치 높이 3 mm 일 때, 패치 길이 $48 mm{\times}$폭 90 mm로 평면형($84 mm{\times}90 mm$)에 비해 42.9 %의 길이 단축 효과를 얻었으며, 반사손실 -20.3 dB, -10dB 대역폭 9 MHz (0.5 %), E-면 -3dB 빔폭 $77.7^{\circ}$, H-면 -3dB 빔폭 $66.2^{\circ}$, 이득 5.3 dBd의 특성을 나타내었다. 원형편파의 경우, 설계 주파수에서 패치 크기는 $57 mm{\times}57 mm$의 정방형으로서 T자형 슬릿 길이만을 조절하여 $90^{\circ}$의 위상차를 야기시켰으며 평면형 원형편파($82 mm{\times}86.5 mm$)에 비해 54.2 %의 면적 축소 효과 및 이득 3.89 dBd, 반사손실 -28.9 dB, 축비 1.96 dB, 2dB 축비 유지 대역폭 18 MHz로 양호한 원형편파 특성을 얻었다.

  • PDF

Influence of Design Parameters on Maximum Controllable Current of Trench Gate CB-BRT(Base Resistance Controlled Thyristor) (Trench gate CB-BRT의 최대 제어 가능 전류에 대한 설계 변수들의 영향)

  • Ji, In-Hwan;Oh, Jae-Keun;Jeon, Byung-Chul;Han, Min-Koo;Choi, Yearn-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.153-155
    • /
    • 2002
  • Trench sate CB-BRT:TC-BRT의 최대 제어 가능 전류(Maximum Controllable Current)에 영향을 미치는 설계 변수들을 조사하였다. 최대 제어 가능 전류를 결정하는 중요 설계 변수들로 트렌치 깊이, 핑거 게이트 길이, 메인 게이트 길이, 트렌치 밀도를 고려하였다. TC-BRT의 실험적 결과를 기존의 BRT와 CB-BRT의 결과와 비교하였다. 최대 제어 가능 전류는 트렌치 깊이와 트렌치 밀도가 증가하고 메인 게이트 길이가 감소할수록 증가하였으며 핑거 게이트 길이에 대해서는 큰 영향을 받지 않았다. 핑거 게이트가 있는 TC-BRT가 없는 것에 비해 최대 제어 가능 전류가 약 15% 높게 나타났다. 트렌치 밀도가 작을 때는 핑거 게이트에 의한 영향이 두드러지고 트렌치 밀도가 높아질수록 트렌치 게이트의 역할이 증가하였다.

  • PDF

Simplified Design Equation of Splice Length of Deformed bars in Compression (압축을 받는 이형철근의 단순화된 이음 설계식)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.33-34
    • /
    • 2010
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Based on the basic form of design equations for development lengths of deformed bars and hooks in tension, simplifed design equation of deformed bars in compression was proposed using regression analyses.

  • PDF

Compression Lap Splice Length in Concrete of Compressive Strength from 40 to 70 MPa (40-70 MPa 콘크리트에서의 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Current design codes regarding compression lap splice do not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of compressive strength of concrete and transverse reinforcement. This anomaly confuses engineers in practice. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens conducted by authors. Basic form of the equation includes main parameters which are derived from investigating test results. Through two-variable non-linear regression analysis of measured splice strengths, a strength equation of compression lap splices is then derived. A specified splice strength is defined using a 5% fractile coefficient and a lap length equation is constructed. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Interoperable Model Generation for Steel Structures with Structural BIM(S-BIM) according to the Improvement of Data Exchange System (S-BIM 기반 철골구조물에서의 정보호환체계 개선에 따른 상호운용 모델 구축)

  • Han, Sang-Woo;Cho, Young-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.656-659
    • /
    • 2011
  • 최근 우리나라뿐만 아니라 전 세계적으로 고층건물의 규모가 점점 커짐에 따라 고층 건물은 초기단계에서부터 막대한 자원과 비용이 발생하고 도중에 설계변경이 어렵거나 불가능한 경우가 많아졌다. 때문에 초기구조설계과정과 실시설계, 시공과정에서의 차이를 최대한 줄이는 것이 사업의 경제성을 좌우할 만큼 중요한 비중을 차지한다. 이러한 정보를 제대로 관리할 초고층 BIM 정보환경이 구축된다면 발주자 설계자 시공자가 얻게 될 이익은 결코 적지 않을 것이다. S-BIM 프로세스 상에서 철골조를 형성하기 위해서는 세 단계의 프로세스를 거치는데 구조 해석 및 설계 단계, 구조 해석 및 설계 결과 데이터베이스 구축, 철골구조설계 및 형상화 모듈에 의한 부재 생성이다. 본 연구에서는 구조해석 및 설계(Analysis and Design, A&D) 데이터베이스를 C#코딩을 통해 형상, 길이 및 위치 정보를 결정하는 데 필요한 정보를 모듈 상에 불러오고, 이를 이용한 부재의 치수, 길이, 좌표 값을 산정하였다. 모듈 결과 생성된 정보를 BIM 플랫폼 상에 모델링함으로써 사용자 입력 값을 최소로 하여 기존 BIM 플랫폼의 모델링 방법 대비, 생산성이 향상된 철골구조설계의 자동화를 구현해 보고자 하였다.

  • PDF

Experimental Study on Lap Splice of Headed Deformed Reinforcing Bars in Tension (인장력을 받는 확대머리 이형철근의 겹침이음에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.59-67
    • /
    • 2014
  • In tension lap splices of straight deformed bars, KCI Code (KCI2012) and ACI Code (ACI318-11) requires that the lap lengths for class B splice are 1.3 times as development length. KCI2012 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. The purpose of this experimental study is to evaluate that KCI2012 equation for the development length, $l_{dt}$, of headed bars can be used to calculate the lap length, $l_s$, of headed deformed bars in grade SD400 and SD500, having specified yield strength of 400 and 500 MPa. Test results showed that specimens with $l_s$ equal to $1.3l_{dt}$ had maximum flexural strengths as 1.16~1.31 times as the nominal flexural strengths, flexural failure mode, and ductility. These observations indicate that $1.3l_{dt}$ is suitable to the tensile lap length of headed deformed bars in grade SD400 and SD500.

Case Study on Design Efficiency and Bearing Capacity Characteristics of Bored PHC Piles (PHC 매입말뚝의 설계효율과 지지력 특성 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Choi, Yong-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.45-53
    • /
    • 2019
  • In this study, it was analyzed the cases of bored PHC piles designed for the building foundations. The overall length of the piles varies within a maximum of 35 m. However, the average length was 17.0 to 18.9 m depending on the kind of the bedrock, with no significant difference. The socket length entered into the bedrock was designed with approximately 58% of the whole piles being 1m, the minimum length of the specification, and up to 5m. Although the range in design efficiency was very large, on average it was about 70%, consistent with the usual known extent. Applications with low design efficiency were mainly shown on the foundation of low-rise buildings or rides with low design load. On the weathered rock, the design load, which governs the design result was widely distributed at 65 to 97% of allowable bearing capacity of ground. The ratio of allowable axial load of piles to allowable bearing capacity of ground is also widely distributed between 36 and 115%, so optimization efforts are required along with design efficiency. On the other hand, the allowable bearing capacity on the soft or hard rock was highly equal, mostly within 90% of the allowable axial load of piles. In the design, the end bearing resistance averaged over 75% of the allowable bearing capacity. However, the results of the dynamic pile load test show that the end bearing resistance was predominant under the E.O.I.D conditions, and in some cases, the end bearing resistance was at least 25% under the restrike conditions.

Design Equations of Compression Splice Strength and Length in Concrete of 100 MPa and Less Compressive Strength (100 MPa 이하 콘크리트의 철근 압축 이음 강도와 이음 길이 설계)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Although a compression splice length does not need to be longer than a tension splice length due to end bearing effect, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including concrete strength effect need to be found for economical design of ultra-high strength concrete. An experimental study has been conducted using column specimens with concrete strength of 80 and 100 MPa with transverse reinforcement. The test results showed that splice strengths improved when the amount of transverse reinforcement increased. However, end bearing strength did not increase when larger amount of transverse reinforcement is provided within the spliced zone. Therefore, the splice strength enhancement was attributed to the improvement of bond. From regression analysis of 94 test results including specimens made with concrete strength of 40 and 60 MPa, a new design equation is proposed for compression lap splice in the concrete compressive strength ranging from 40 to 100 MPa with transverse reinforcement. By using the proposed equation, the incorrect design equations for lap splice lengths in tension and compression can be corrected. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation (대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.5-16
    • /
    • 2015
  • In the long span bridge construction, construction cost portion of large scale marine foundation is about 40% (KICTEP, 2007). In this study, designs for deep water depth large composite foundation of a super long span cable-stayed girder bridge of prototype were performed by three design methods (ASD, LRFD, Eurocode) and the behaviors of a large diameter drilled shaft were analyzed and the 3D numerical analysis was performed. As a result, the soft rock socket lengths in allowable stress design estimation method were the longest. The soft rock socket lengths estimated by the design approach 2 among Eurocode and the LRFD were similar. The longer the socket length socketed in the soft rock was, the smaller the axial force acting on a large-diameter drilled shaft head was and the smaller the settlement of drilled shaft was.