• Title/Summary/Keyword: 설계파 산정

Search Result 116, Processing Time 0.026 seconds

Reliable Evaluation of Dynamic Ground Properties from Cross-hole Seismic Test using Spying-loaded Lateral Impact Source (스프링식 횡방항 발진 크로스홀 탄성파 시험을 통한 지반 동적 특성의 합리적 산정)

  • Sun, Chang-Guk;Mok, Young-Jin;Chung, Choong-Ki;Kim, Myoung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.1-13
    • /
    • 2006
  • Soil and rock dynamic properties such as shear wave velocity $(V_s)$, compressional wave velocity $(V_p)$ and corresponding Poisson's ratio (v) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as $V_s,\;V_p$ and v with depth from the soil surface to the engineering and seismic bedrock were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

Road Drainage Facility Design Methods apply on the Hydraulic and Hydrologic Analysis (수리·수문기술을 적용한 도로 배수시설 설계 기법)

  • Lee, Man-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.419-430
    • /
    • 2012
  • Due to the calculation difficulty on the hydraulic and hydrologic analysis for road drainage facilities design, these analysis techniques are not applicable. This study's result are development of minutely rainfall-intensity equation suitable for road drainage area, verification of rainfall-runoff model joining kinematic wave theory for road drainage area, computational model based GUI for road surface drainage facilities spacing and culvert's size decision and various road drainage channel design. Applicable test on the developed model is proceed, result that in case of road surface dranage facilities spacing is narrower 6~65% than present spacing calculation method, in other case of road cross dranage facilities size is bigger 6~140% than present size decision method.

A Study on a Reasonable Choice of Simulation Model for Rainfall-Runoff in the Prior Review System on Disaster Effect (사전재해영향성검토 시 합리적인 홍수유출 모의모형 선정에 관한 연구)

  • Lee, Jung-Min;Yun, Jeong-Ran;Kim, Young-Jin;Jin, Kyu-Nam;Han, Hyung-Geun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • Urban development is a cause of expansion of impervious area. A permanent storage is operated as a method of reducing runoff of watershed. The purpose of study is to propose reasonable choice of simulation model for rainfall-runoff in the prior review system on disaster effect. First, we indicated problem about concentration time choice in the flood simulation. To test the adequacy of a rainfall-runoff simulation model, We analyzed characteristics of rainfall-runoff about urban and natural watersheds. A simulation model was calibrated with the storm of july 7 to July 9 in 2009. From the result, we proposed that SWMM and kinematic wave method as the flood simulation models for urban and natural watersheds. A simulation model and design method of a permanent storage for flood that is proposed in this study will be useful for practical design of flood simulation. The hydrologic analysis method of the study can be used for capacity evaluation of permanent storage plan.

Liquefaction Assessment Variations with Regard to the Cyclic Resistance Ratio Estimation Methods (전단저항강도비 산정 방법에 따른 액상화 평가의 변화)

  • Song, Sungwan;Kim, Hansaem;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • Recently, as the number of earthquakes increases in the Korean Peninsula and surrounding area, the importance of earthquake countermeasures and seismic design has been increasing. As a result, interest and concerns about liquefaction, which is one of the problems that concern the earthquake, are increasing. There are various methods that can assess the possibility of liquefaction by using geotechnical information for specific ground. However, direct comparisons of each method are not yet available. In this study, the two methods using the SPT-N value and the shear wave velocity among the methods for estimating the Cyclic Resistance Ratio (CRR) value required for the simplified liquefaction assessment method were compared. And the correction of the ground information required to use the two methods respectively was compared. As a result, more accurate evaluation results were obtained when the CRR value is calculated using the SPT-N values.

Principles and Considerations of Bender Element Tests (벤더엘리먼트 시험의 원리와 고려사항)

  • Lee Jong-Sub;Lee Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • The shear wave velocity is related with the stiffness of granular skeleton and mass density. The shear stiffness of the granular skeleton remains unaffected by the presence of the fluid. Bender elements are convenient shear wave transducers for instrumenting soil cells due to optimal soil-transducer coupling. This study addresses the principles of the shear wave, the design and implementation of bender elements including electromagnetic coupling prevention, directivity, resonant frequency, detection of first arrival, and near field effects. It is shown that electromagnetic coupling effects can be minimized using parallel-type bender elements. Thus, the in-plane S-wave directivity is quasi-circular. The resonant frequency of bender element installations depends on the geometry of the bender element, the anchor efficiency and the soil stiffness. One of the most cumbersome parts in the bender element test is near field effects, which affect the selection of arrival time. The selection of the first arrival within the near field Is effectively solved by the multiple reflection technique and signal matching technique. Bender elements, which requires several considerations, may be effective tools for the subsurface characterization by using S-wave.

Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil (지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석)

  • Kim, Gun-Woo;Lim, Hyun-Sung;Song, Su-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.7-20
    • /
    • 2020
  • In this study, the dynamic behavior of a single pile foundation was investigated by using an analytical and numerical studies. The emphasis was given on quantifying a function about the coefficient of dynamic horizontal subgrade reaction from 3D analysis. Based on the numerical analysis, a modified correction factor (α), which is used to obtain the coefficient dynamic horizontal subgrade reaction, was proposed by considering shear wave velocity of soil and confining stress. It was found that the prediction by pseudo-static analysis using the proposed coefficient is in good agreement with the general trends observed by dynamic analysis, and it represents a practical improvement in the prediction of behavior for pile foundations subjected to dynamic loads.

Hydraulic Experiments on Wave Transmission Coefficients for Rubble Mound Structure Armored with Tetrapods (TTP 피복 경사식 구조물의 전달파고계수 산정에 관한 수리실험)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.198-205
    • /
    • 2017
  • Two-dimensional hydraulic model experiments on rubble mound structure armoring with the tetrapods and the superstructure were conducted to investigate wave transmission characteristics under irregular wave conditions. The previous studies about the wave transmission coefficients dealt with the low crested structures, therefore the rock was the main armor units and the superstructure was not constructed. In this study, the new empirical design formula for the wave transmission coefficient about rubble mound structure with the tetrapods and the superstructure was suggested and the effects of wave steepness and the row of the tetrapods in front of the superstructure could be considered.

Analysis of Extreme Wave Conditions for Long-Term Wave Observation Data Considering Directionality (방향성을 고려한 장기 파랑관측자료의 극치파랑조건 분석)

  • Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.700-711
    • /
    • 2022
  • In this study, deepwater design waves were estimated for 16 wave directions and various return periods based on statistical analysis of extreme waves observed for more than 20 years at three stations (Chilbal-do, Geomun-do, Donghae). These values were compared with design waves estimated based on the omni-directional wave data. The Weibull distribution was used as the probability distribution function whose parameters were determined by the least square method. The Kolmogorov-Smirnov test was applied for the goodness of fit test. Notably, the directional design waves were smaller than the omni-directional design wave for every wave direction. The maximum 50-year wave heights for directional sectors were 7.46 m (NNE), 12.05 m (S), and 9,59 m (SSW) at Chilbal-do, Geomun-do and Donghae whereas those for uni-directional wave data were 7.91 m, 13.82 m and 10.38 m, respectively. This implied possible under-estimation of the deepwater design waves for 16 wave directions being currently used in the design of offshore and coastal structures.

Variation in Characteristics of Elastic Waves in Frozen Soils According to Degree of Saturation (포화도에 따른 동결토의 탄성파 특성 변화)

  • Park, Jung-Hee;Kang, Min-Gu;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1063-1075
    • /
    • 2013
  • The strength of frozen soils is one of the significant design parameters for the construction in frozen ground. The properties of frozen soils should be investigated to understand the strength of frozen soils. The objective of this study is to figure out the characteristics of elastic waves in frozen soils, which reflect the constituent and physical structure of frozen soils in order to provide fundamental information of those according to the degree of saturation. Freezing cell is manufactured to freeze specimens, which are prepared with the degree of saturation of 10%, 40%, and 100%. Piezo disk elements are used as the compressional wave transducers and Bender elements are used as the shear wave transducers. While the temperature of specimens changes from $20^{\circ}C$ to $-10^{\circ}C$, the velocities, resonant frequencies and amplitudes of the compressional and shear waves are investigated based on the elastic wave signatures. Experimental results reveal that the elastic wave velocities increase as the degree of saturation increases. The variation of resonant frequencies coincide with that of elastic wave velocities. A marked discrepancy in amplitudes of compressional and shear waves are observed at the temperature of $0^{\circ}C$. This study renders the basic information of elastic waves in frozen soils according the degree of saturation.

A Study on Development of Downstream Flood Damage Prediction Model by Dam-Break of Small Agricultural Reservoir (농업용 소규모 저수지의 붕괴에 따른 하류부 피해예측모델 개발에 관한 연구)

  • Park, Jong-Yoon;Jung, Wan-Sue;Lee, Joo-Heon;Kang, Boo-Sik;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1832-1835
    • /
    • 2010
  • 본 연구는 이상홍수와 급속한 도시화로 인하여 설계 및 축조 당시의 수문, 기상환경이 변화함에 따라 해마다 증가하는 저수지관련 홍수피해에 효율적으로 대처하기 위하여 국내 농업용 저수지 17,649개 중 14,154개(80.2%)에 해당하는 30만$m^3$ 이하의 소규모 저수지를 대상으로 댐 붕괴에 의한 저수지 하류의 피해 규모 및 피해양상을 정량화 할 수 있는 피해예측모델을 개발함으로써 저수지 하류하천 위험기준을 수립할 수 있는 방안을 제시하고자 한다. 이를 위해 경기도 용인시에 위치한 창리저수지(20.0만$m^3$)를 대상으로 댐 붕괴 시나리오를 작성하고 빈도별홍수량 및 가능최대홍수량(Probable Maximum Flood, PMF)을 산정하여 HEC-HMS 모형을 이용한 댐 붕괴 모의를 실시하였다. 하류부 홍수해석은 창리저수지 직하류 화곡천(1.12km) 구간에 대해 HEC-RAS 모형을 이용하여 댐 붕괴 홍수파 수문곡선에 따른 홍수범람도를 작성하였다. 또한 홍수범람구역에 해당되는 행정구역의 자산DB를 구축하고 홍수피해산정 방법으로 널리 사용된 다차원법(Multi - Dimensional Flood Damage Analysis, MD-FDA)과 기존 간편법의 장점을 살려 댐 붕괴에 따른 하류부 홍수피해액을 산정하였다.

  • PDF