• Title/Summary/Keyword: 설계인장강도

Search Result 492, Processing Time 0.026 seconds

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF

Study on Direct Tensile Properties and Reliability Review of Steel Fiber Reinforced UHPC (강섬유 보강 UHPC의 직접인장 특성 및 신뢰성 검토에 관한 연구)

  • Park, Ji Woong;Lee, Gun Cheol;Koh, Kyung Taek;Ryu, Gum Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.125-132
    • /
    • 2018
  • In this study, a direct tensile test was planned to identify the tensile performance of UHPC, and the irregularity of cracks, which is a problem of the direct tensile test, was complemented through the introduction of notches at the center of a specimen. In this regard, a number of specimens divided by batch to reduce the deviation of direct tensile test values were fabricated to present reference data with respect to highly reliable direct tensile strength values. In addition, the mechanical properties and reliability of the specimens were examined under the curing conditions of the specified design strength of 120MPa for the steel fiber reinforced concrete with 1.5% fiber volume fraction, which is most suitable for the field application. As a result, the deviation of averages by batch between compressive strength and direct tensile strength did not show a large difference, and all cracks occurred within 20mm in the direct tensile test. At the 95% confidence interval of the direct tensile strength, the range was considerably small in the mean and the standard deviation, and there was no significant difference depending on the curing conditions. The results confirmed that a stable direct tensile test was performed, and highly reliable results were obtained through the fabrication of specimens by batch and test progress.

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.

Flexural Behavior of High Performance Fiber Reinforced Cementitious Composites (HPFRCC) Beam with a Reinforcing Bar (휨 철근이 배근된 HPFRCC 보 부재의 휨 거동)

  • Shin, Kyung-Joon;Kim, Jae-Hwa;Cho, Jae-Yeol;Lee, Seong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2011
  • In this study, the flexural test for reinforced high performance fiber reinforced cementitious composites (R/HPFRCC) members has been conducted in order to investigate the flexural behavior including the effect of an ordinary tensile reinforcing bar. Through the test, it was observed that the flexural strength increased due to the stable tensile stress transfer of HPFRCC, even up to the ultimate state. In addition, no localized crack appeared until the yielding of the reinforcement. From the layered section analysis of the tested members, it was found that the analysis with the tensile model obtained from the tension stiffening test showed better agreement with the flexural test results, whereas the analysis with direct tension test results overestimated the flexural capacity. Through the experimental and analytical studies, two flexural failure modes have been defined in this paper; concrete crushing at the top compression layer or tensile failure at the bottom tensile layer of the beam section. Based on these two flexural failure modes, a simple formula that estimates the ultimate flexural strength of the member has been proposed in this paper. The proposed equations can be useful in a design and an analysis of R/HPFRCC members.

Development of Optimum Grip System in Developing Design Tensile Strength of GFRP Rebars (GFRP 보강근의 설계 인장강도 발현을 위한 적정 그립시스템 개발)

  • You Young-Chan;Park Ji-Sun;You Young-Jun;Park Young-Hwan;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.947-953
    • /
    • 2005
  • Previous test results showed that the current ASTM(American Standard for Testing and Materials) grip adapter for GFRP(Glass Fiber Reinforced Polymer) rebar was not fully successful in developing the design tensile strength of GFRP rebars with reasonable accuracy. It is because the current ASTM grip adapter which is composed of a pair of rectangular metal blocks of which inner faces are grooved along the longitudinal direction does not take into account the various geometric characteristics of GFRP rebar such as surface treatment, shape of bar cross section as well as physical characteristics such as poisson effect, elastic modulus in the transverse direction and so on. The objective of this paper is to provide how to proportion the optimum diameter of inner groove in ASTM grip adapter to develop design tensile strength of GFRP rebar. The proportioning of inner groove in ASTM grip adapter is based on the force equilibrium of GFRP rebar between tensile capacity and minimum frictional resistance required along the grip adapter. The frictional resistance of grip adapter is calculated based on the compressive strain compatibility in radial direction induced by the difference between diameter of GFRP rebar and inner groove In ASTM grip. All testing procedures were made according to the CSA S806-02 recommendations. From the preliminary test results on round-type GFRP rebars, it was found that maximum tensile loads acquired under the same testing conditions is highly affected by the diameter of inner groove in ASTM grip adapter. The grip adapter with specific dimension proportioned by proposed method recorded the highest tensile strength among them.

Progressive Damage Modeling of Inter and Intra Laminar Damages in Open Hole Tensile Composite Laminates (오픈 홀 인장 복합 재료 적층판에서 층간 및 내부 손상에 대한 점진적 손상 모델링)

  • Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • Open-hole tensile tests are usually performed to measure the tensile strengths of composites as they are an essential parameter for designing composite structures. However, correctly modeling the tensile test is extremely challenging as it involves various damages such as fiber and matrix damage, delamination, and debonding damage between the fiber and matrix. Therefore, a progressive damage model was developed in this study to estimate the in-plane failure and delamination between the fiber and matrix. The Hashin damage model and cohesive zone approach were used to model ply and delamination failures. The results of the present model were compared with previously published experimental and numerical findings. It was observed that neglecting delamination during finite element analysis led to overestimation of tensile strength.

Evaluation of Forming Performance of Cold Rolled Steel Pipes & Tubes for Building Structure (건축구조용 냉간성형 강관의 가공성능 평가)

  • Im, Sung Woo;Choi, Kwang;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.33-42
    • /
    • 2004
  • Making use of SN steel in the building structure should be a prerequisite to adopt the design strength of said steel. As a preceding study, the material properties of STKN400B/490B tubes and SPAP235/325 and SPAR295 square pipes manufactured using SN400B/490B plates were evaluated. Compared with the yield and ultimate strengths of SN400B/490B plates, those of STKN400B/490B tubes increase. Nonetheless, the yield and ultimate strengths of STKN400B/490B tubes satisfied the design codes of STKN400B/490B tubes even though the tubes were fabricated via roll bending or press forming. On the other hand, the yield and ultimate strengths at the edges of SPAP235/325 square pipes did not satisfy the design codes based on the values at the sides. The maximum tensile and compressive residual stresses at the SN490B tube were equal to and 40% of the yield strength of the SN490B plate, respectively, In the case of the SPAP325 square pipe, both the maximum tensile and compressive residual stresses were 80% of the yield strength of the SN490B plate. The axial compressive loaded column test results snowed that the buckling strengths were not very different regardless of the mode of fabrication of STKN490B tunes. i.e., through roll bending or press forming. On the other hand, the buckling strength of the SPAP325 square pipe was higher than that of the built-up square pipe.

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

Tensile Stress-Strain Relation of ECC (Engineered Cementitious Composite) Accounting for Bridging Curve (실제 균열면응력-변위 곡선을 고려한 ECC의 1축 인장거동 관계)

  • Kim, Jeong-Su;Lee, Bang Yeon;Kwon, Seong-Hee;Kim, Jin-Keun;Kim, Yun Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.933-936
    • /
    • 2008
  • An engineered cementitious composite (Engineered Cementitious Composite) had been developed in previous study. Theoretical prediction of the tensile stress-strain relation of ECC is important in providing the material constitutive relation necessary for designing structural members. But, few studies have been reported with regard to predicting the tensile stress-strain relation of ECC. Prediction of the tensile stress-strain relation of ECC accounting for actual bridging curve, such as fiber dispersion is needed. The present study extends the work as developed by Kanda et al., by modeling the bridging curve, accounting for fiber dispersion, the degree of matrix spalling, and fiber rupture to predict the tensile stress-strain relation of ECC. The role of material variation in the bridging curve, such as number of effective fiber actually involved in the bridging capacity and how it affects the multiple cracking process is discussed. The approach for formulating the tensile stress-strain relation is discussed next, where the procedure for obtaining the necessary parameters, such as the crack spacing, is presented. Finally, the predicted stress-strain relation will be validated with experimental tests results.

  • PDF

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.