• Title/Summary/Keyword: 설계인장강도

Search Result 492, Processing Time 0.03 seconds

A Study on Increasing the Safety of Overhead Optical Communication Line about Abnormal Tension (이상 장력에 대한 가공 광통신선의 안전성 증진 대책 연구)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.167-171
    • /
    • 2006
  • 본 연구에서는 통신선 가설 보조 기구인 조가선에 이상 장력이 작용하였을 때 전주의 영향을 유한 요소 해석을 통하여 평가하였고, 전주와 가공 광통신선에 대한 보호 기구를 설계 해석하여 보호시스템을 개발하였다. 보호시스템은 일반하중 또는 풍압과 일반적인 불평형 하중에서는 조가선이 탈락되지 않고 일정강도 이상이 가해지면 조가선이 자동 탈락되어 전주의 절손 방지 및 전주에 거치되어 있는 광통신선의 단선 방지 역할을 한다. 이러한 보호시스템의 구조는 유한 요소 해석을 통하여 해석되어졌고, 실제 제품에 대한 인장강도를 측정함으로써 성능을 입증하였다.

  • PDF

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Experimental Study on Compressive Strength of Concrete Column Retrofitted by Carbon FRP Sheet (탄소섬유시트로 보강된 콘크리트 기둥의 압축성능 평가를 위한 실험연구)

  • Yoo, Youn-Jong;Lee, Kyoung-Hun;Kim, Heecheul;Lee, Young-Hak;Hong, Won-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2008
  • In 1980 and 1990's most of residential buildings were constructed with relatively low strength concrete of 18 MPa. And, columns were designed considering only vertical loads. In this study, compressive strength tests for low strength RC columns retrofitted by carbon fiber sheets were carried out. Carbon fiber sheet provides constructability and high tensile strength as well as good corrosion resistance characteristics. A pair of carbon sheets were wrapped with ${\pm}60^{\circ}$ angle with respect to longitudinal direction of RC column to increase structural capacity against axial and lateral load simultaneously. Strength and strain patterns and failure modes of specimens were analyzed and prediction equation of increased compressive strength of RC column confined by carbon fiber sheet was proposed based on regression analysis.

Analytical and Experimental Studies on Splice Sleeves for SD500 Rebars (SD500 철근용 충전식 슬리브 철근이음에 대한 해석 및 실험적 연구)

  • Oh, Young-Hun;Moon, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.165-173
    • /
    • 2013
  • Splice sleeves for HD25 and HD32 rebars with yield strength 500 MPa were studied experimentally and analytically. The shapes of sleeve was examined with nonlinear finite element analyses. A total of 18 specimens were tested with test variables of rebar types, sleeve lengths, mortar compressive strengths, and rebar development lengths. Three identical specimens per each variable were tested in order to prevent any test errors. After tests, numerical studies with a nonlinear finite element method were conducted to evaluate the test results. Experimental studies with 18 specimens showed that the sleeves of this study satisfies the code requirement. It was found that the strength of mortar and the bar development length within the sleeves did not affect to the load-carrying capacity of sleeves.

Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge (강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안)

  • Lee, Kyoung-Chan;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.15-21
    • /
    • 2009
  • The design of the stud shear connector of a bridge structure is mostly controlled by the fatigue resistance not by the strength, if it is followed by AASHTO LRFD Bridge Design Specification. This fatigue design code in AASHTO LRFD is based on the research work done by Slutter and Fisher in 1966. These tests seemingly underestimated the fatigue resistance of connectors because of the inherent eccentricity of the one-face test setup which results additional tension forces to the stud. In addition, the stress ranges were not plotted in the log scale, because it was not known at that time that the fatigue resistance of the welded steel structures has a linear relationship of log scales of stress range and number of loading cycles. This study evaluates the test data produced by the Slutter and Fischer, and plot the data on the proper manner. The fatigue push-out test data produced recently by many other researches all around the world are gathered and analyzed, furthermore a design curve is recommended.

Investigation of Slab Thickness Influence on Prestressing Design of Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장 긴장 설계에 대한 슬래브 두께의 영향 분석)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2009
  • This study was conducted to investigate the effect of the slab thickness on the tensioning design and to determine the optimal slab thickness of the post-tensioned concrete pavement (PTCP). The tensile stresses due to the vehicle and environmental loads were obtained using a finite element analysis model and the tensioning stress was calculated employing an allowable flexural strength. The environmental loads of both the constant temperature gradient and the constant temperature difference between top and bottom of the slab were considered. The tensioning designs for various slab thicknesses were performed considering prestressing losses. The comparison results showed that generally as the thickness increased, the number of tendons became larger. Consequently, the design was not economical for a thicker slab thickness. Even though the number of tendons became smaller with an increase in the thickness under the small environmental load, a thicker PTCP slab was not economical because of a higher cost of concrete than that of steel. Therefore, the slab thickness should be kept in minimum within the construction available thicknesses.

  • PDF

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.

Study on Obstacle Deflector of a Railway Vehicle Using Tension-type Energy Absorbers (인장형 에너지흡수부재를 이용한 철도차량용 장애물제거기 연구)

  • Kim, Hongeik;Kim, Jinsung;Kwon, Taesoo;Jung, Hyunseung
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.173-181
    • /
    • 2017
  • The obstacle deflector sweeps obstacles off the track or absorbs crash energy with an energy absorber to prevent derailment of a train and to minimize damage and casualties after an accident. In this study, an obstacle deflector and its operational mechanism were designed with a tension-type energy absorber and a 4-bar linkage system. Also, a test method was suggested and verified with FEA (Finite Element Analysis) and UTM (Universal Test Machine) for testing of the static load and energy absorbing ability according to EN 15227 regulations. Through this study, an obstacle deflector that meets the EN 15227 standard was designed and a test method was suggested to adjust the collapse load easily and to verify it experimentally according to the design and verification procedure of the obstacle deflector.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

An Experimental Study on the Behavior of Curved Panel Parts Using Composite Materials (복합소재를 활용한 곡면 패널의 부재단위 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.474-480
    • /
    • 2018
  • FRP is a new material that is lightweight, has high strength and high durability, and is emerging as a third construction material in many countries. The composite material panel targeted in this study was a curved member and is the most frequently used arch-shaped member of a structures, such as tunnels. Composite curved panels can be produced in high quality and large quantities through automation operations. On the other hand, the frequency of application is low, and the design criteria and experimental data are lacking. Therefore, this study examined the mechanical performance of the member unit first to verify its performance as structural members of the FRP curved panel. For this purpose, tensile, compression, and connection performance tests were carried out. The tensile tests showed greater tensile strength of specimens with larger curvature, and the compression tests showed that the composite section of a composite material has greater compressive strength than the concrete section. Finally, the test of the performance of the connection showed that the attachment performance of the connection was more than equal to that of the FRP composite material panel.