• Title/Summary/Keyword: 설계이력정보

Search Result 223, Processing Time 0.02 seconds

Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)

  • Lee, Jae Kyu;Park, Heesung;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.95-112
    • /
    • 2021
  • In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

Improvement Strategy & Current Bidding Situation on Apartment Management of Landscape Architecture (공동주택 조경관리 입찰 실태와 개선방안)

  • Hong, Jong-Hyun;Park, Hyun-Bin;Yoon, Jong-Myeone;Kim, Dong-Pil
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.41-54
    • /
    • 2020
  • This study was conducted to provide basic data for a transparent and fair bidding system by identifying problems and suggesting improvement measures through an analysis of the bidding status for construction projects and service-related landscaping of multi-family housing. To this end, we used the data from the "Multi-Family Housing Management Information System (K-apt)" that provides the history of apartment maintenance, bidding information, and the electronic bidding system to examine the winning bid status and amount, along with the size and trends of the winning bids by year, and the results of the selection of operators by construction type. As a result, it was found that out of the total number of successful bids (36,831), 4.4% (16,631) were in the landscaping business, and the average winning bid value was found to be about 24 million won. According to the data, 73% of the landscaping cases were valued between 3 million won and 30 million won, and 58.6% of the cases were in the field of "pest prevention and maintenance". 36% of the total number of bids were awarded from February to April, with "general competitive bidding" accounting for 59.8% of the bidding methods. As for the method of selecting the winning bidder, 55% adopted the "lowest bid" and "electronic bidding method," and 45% adopted the "qualification screening system" and "direct bidding method." As an improvement to the problems derived from the bidding status data, the following are recommended: First, the exception clause to the current 'electronic bidding method' application regulations must be minimized to activate the electronic bidding method so that a fair bidding system can be operated. Second, landscaping management standards for green area environmental quality of multi-family housing must be prepared. Third, the provisions for preparing design books, such as detailed statements and drawings before the bidding announcement, and calculating the basic amount shall be prepared so that fair bidding can be made by specifying the details of the project concretely and objectively must be made. Fourth, for various bidding conditions in the 'business operator selection guidelines', detailed guidelines for each condition, not the selection, need to be prepared to maintain fairness and consistency. These measures are believed to beuseful in the fair selection of landscaping operators for multi-family housing projects and to prepare objective and reasonable standards for the maintenance of landscaping facilities and a green environment.