• Title/Summary/Keyword: 설계외기온

Search Result 25, Processing Time 0.024 seconds

Experimental Study on the Infiltration Loss in Plastic Greenhouses Equipped with Thermal Curtains (보온커튼을 설치한 플라스틱 온실의 틈새환기전열량 실측조사)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.100-105
    • /
    • 2015
  • The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.

Application of Cold Weather Concreting with Accelerator for Freeze Protection to Full Scale Structures (내한촉진제를 사용한 한중콘크리트의 실구조물 적용에 관한 연구)

  • Kim, Young-Jin;Baek, Tae-Ryong;Lee, Sang-Soo;Won, Chul;Kim, Dong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, the results of applying cold weather concreting mixed with Accelerator for Freeze Protection(AFP) to full scale structures are presented. Since the determination of W/C and amount of AFP significantly have an effect on strength gain and protection of frost damage in early, a full investigation is needed to determine these values at stage of nux design. The flowability of fresh cold weather concreting with AFP was similar to the same W/C. Lower loss of workability and initial slump flow of concrete using superplasticizer of polycarboxylic ester than that of melamine sulphonate showed that polycarboxylic ester was more effective on elapsed time. Temperature histories of specimens located in insulation boxes at the site was similar to that of structures. Thus, it is cleared that simple adiabatic curing method is effective for evaluating in-place concrete strength than specimens cured by sealing method. The investigation results of development of compressive strength of cold weather concreting included AFP with curing methods by logistic curves indicated that AFP can be effective to gain strength at lower temperature than normal curing temperature. In field testing, vinyl sheets were placed over the concrete sections and AFP enabled concrete to gain $5N/{mm}^2$ to protect frost damage in early ages and specified compressive strength of concrete at 28 days under average temperature of $-2^{\circ}C$ (lowest temperature was $-12^{\circ}C$) during site application.

A Study on the Evaluation of Thermal Transmittance Performance of Aluminum Alloy Window Frame of Educational Facility considering 2 Dimensional Steady-state Heat Transfer (2차원 정상상태 전열해석을 통한 교육시설의 알루미늄 창호 열관류율 평가에 관한 연구)

  • Park, Tong-So
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5284-5289
    • /
    • 2011
  • This study focused to evaluate thermal transmittance(U-value) performance of sliding type of aluminum alloy window frame(AAWF) with double glazing(DG) and glazing spacer and that without thermal breaker in winter and summer season by two dimensional steady state heat transfer analysis. The AAWE was installed to an existing educational facilities in Seosan area which is the southern region of the Korean Peninsula. Analysis of 2D steady-state heat transfer was performed through the use of BISCO as calculation and simulation program. U-value and temperature factors were calculated. The results are as followed. First, the isotherm simulation shows that AAWF with double glazing have serious differences from recently proposed window thermal performance standards such as Insulation Performance of Windows and Doors of Building Energy Saving Design Standards and the results of calculation of thermal transmittance performance of AAWF and DG are U=9.631 W/$m^2K$, U=2.382 W/$m^2K$ respectively during winter and summer season. Second, the results of analysis of heat transfer analysis, calculated by simulation, shows that 225% of heat is lost comparing with thermal performance standards U=4.0 W/$m^2K$ of general double glazing among those standards on AAWF without thermal breaker.

Microbial Population Diversity of the Mud Flat in Suncheon Bay Based on 16S rDNA Sequences and Extracellular Enzyme Activities (남해안 갯벌 미생물의 세포외효소 활성 및 16S rDNA 분석에 의한 다양성 조사)

  • Kim, Yu-Jeong;Kim, Sung-Kyum;Kwon, Eun-Ju;Baik, Keun-Sik;Kim, Jung-Ho;Kim, Hoon
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.268-275
    • /
    • 2007
  • Diversity of the mud flat microbial population in Suncheon Bay was investigated by studying extracellular enzyme activities and 16S rDNA sequences. Four culturable bacterial strains with CMCase, xylanase and protease activities were isolated from the wetland and the mud flat. All the strains produced more xylanase activity than CMCase or protease activity, and the properties of the isolate enzymes from the wetland were similar to those from the mud flat. About 2,000 clones were obtained with the 16S rDNA amplified from the metagenomic DNA isolated from the mud samples. Based on the restriction pattern(s), seventeen clones were selected for base sequence analysis. Of the 17 clones, only 35% (6 clones) were found to be cultured strains and 65% (11 clones) to be uncultured strains. The similarities in the base sequences of the clones ranged from 91.0% to 99.9% with an average similarity of 97.3%. The clones could be divided into 7 groups, Proteobacteria (9 clones, 52.9%), Firmicutes (3 clones, 17.6%), Bacteroidetes (1 clone), Flavobacteria (1 clone), Verrucomicrobia (1 clone), Acidobacteria (1 clone), and Chloroflexi (1 clone). Most of the Proteobacteria clones were gamma Proteobacteria associated with oxidation-reduction of sulfur.

Analysis of Environment Factors in Pleurotus eryngii Cultivation House of Permanent Frame Type Structure (영구형 큰느타리버섯 재배사의 환경요인 분석)

  • Yoon Yong-Cheol;Suh Won-Myung;Lee In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2006
  • Pleurotus eryngii is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the yew round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation houses of permanent frame type (A, B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted for about two-year ken Nov. 2003 to Dec. 2005 in cultivation house. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Because the capacity of electric heater and air circulation were not enough, air temperatures in cultivation house before improvement of system were maintained somewhat lower than setting temperature, and maximum air temperature difference between the upper and lower growth stage during a heating time period was about 5.1. But the air temperatures after system improvement were maintained within the limits range of setting temperature without happening stagnant of air. Air temperature distribution was generally distributed uniform. Relative humidity in cultivation house before , improvement was widely ranged about $44{\sim}100%$. But as the relative humidity after improvement was ranged approximately $80{\sim}100%$, it was maintained within the range of relative humidity recommended. And $CO_2$ concentration was maintained about $400{\sim}3,300mg{\cdot}L^{-1}$ range. The illuminance in cultivation house was widely distributed in accordance with position, and it was maintained lower than the recommended illuminance range $100{\sim}200lx$. The acidity of midium was some lower range than the recommend acidity range of pH $5.5{\sim}6.5$. The yield was relatively ununiform. In case of bottle capacity of 1,300cc, the mushroom of the lowest grade was less than 3%. The consumption electric energy was quite different according to the cultivation season. The electric energy consumed during heating season was much more than that of cooling season.