• Title/Summary/Keyword: 설계변수의 연계와 고정

Search Result 4, Processing Time 0.024 seconds

A Practical Procedure for the Design Optimization of Pile-type Substructure in a Mooring Dolphin (계류돌핀의 말뚝형 하부구조에 대한 실용적 설계 최적화 과정)

  • Ryu, Yeon-Sun;Lee, Nary;Kim, Jeong-Tae;Cho, Hyun-Ma
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.285-294
    • /
    • 2000
  • In this paper, a practical procedure for the design optimization of tubular-steel-pile-type substructure in a mooring dolphin is investigated and numerically evaluated. In the finite-dimensional optimum design formulation, geometry and cross-sectional shapes of classified group of piles are identified as design variables. The design objective is the total weight of piles, and the design constraints on stresses, penetration depth, and size limits are imposed. Several classes of practical design alternatives are sought through the linking and fixing of design variables. Among the available numerical optimization codes, both PLBA program and DNCONF subroutine in IMSL library are used. They are based on SQP algorithm and relatively easy to get. A dolphin of numerical example has 20 tubular steel piles, 4 vertical and 16 inclined. Optimum designs for different cases are successfully obtained for the practical purpose.

  • PDF

Numerical Design Optimization of Mooring Dolphin of Steel Pile Type (강관말뚝식 계류돌핀의 수치적 설계최적화)

  • Lee, Na-Ry;Ryu, Yeon-Sun;Kim, Jeong-Tae;Seo, Kyung-Min;Cho, Hyun-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.3-11
    • /
    • 1999
  • Optimum design of mooring dolphin is numerically investigated. Design optimization problem of moring dolphin is first formulated. Geometry and cross sections of piles are used as design variables. Design objective is the total weight of steel piles of mooring dolphin, and the constraints of stress, penetration depth, lower and upper bounds on design variables are imposed. Based on the design variable linking and fixing, several class of design variations are sought. For the numerical optimization, both PLBA(Pshenichny - Lim - Belegundu - Arora) program and DNCONF subroutine code in IMSL library are used. For a dolphin structure with 20 steel piles, vertical and inclined, optimum designs for different cases are successfully obtained, which can be applied for the mooring of a very large floating structure.

  • PDF

Material Topology Optimization Design of Structures using SIMP Approach Part I : Initial Design Domain with Topology of Partial Holes (SIMP를 이용한 구조물의 재료 위상 최적설계 Part I : 부분적인 구멍의 위상을 가지는 초기 설계영역)

  • Lee, Dong-Kyu;Park, Sung-Soo;Shin, Soo-Mi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This study shows an implementation of partial holes in an initial design domain in order to improve convergences of topology optimization algorithms. The method is associated with a bubble method as introduced by Eschenauer et al. to overcome slow convergence of boundary-based shape optimization methods. However, contrary to the bubble method, initial holes are only implemented for initializations of optimization algorithm in this approach, and there is no need to consider a characteristic function which defines hole's deposition during every optimization procedure. In addition, solid and void regions within the initial design domain are not fixed but merged or split during optimization Procedures. Since this phenomenon activates finite changes of design parameters without numerically calculating movements and positions of holes, convergences of topology optimization algorithm can be improved. In the present study, material topology optimization designs of Michell-type beam utilizing the initial design domain with initial holes of varied sizes and shapes is carried out by using SIMP like a density distribution method. Numerical examples demonstrate the efficiency and simplicity of the present method.

Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods (외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구)

  • Young Kwang Hwang;Myungil Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • Using the proper orthogonal decomposition (POD) based intrusive reduced order model (ROM), the total degrees of freedom of the structural system can be significantly reduced and the critical time step satisfying the conditional stability increases in the explicit time integrations. In this study, therefore, the changes in the critical time step in the explicit time integrations are investigated using both the POD-ROM and Voronoi-cell lattice model (VCLM). The snapshot matrix is composed of the data from the structural response under the arbitrary dynamic loads such as seismic excitation, from which the POD-ROM is constructed and the predictive capability is validated. The simulated results show that the significant reduction in the computational time can be achieved using the POD-ROM with sufficiently ensuring the numerical accuracy in the seismic analyses. In addition, the validations show that the POD based intrusive ROM is compatible with the Voronoi-cell lattice based explicit dynamic analyses. In the future study, the research results will be utilized as an elemental technology for the developments of the real-time predictive models or monitoring system involving the high-fidelity simulations of structural dynamics.