• Title/Summary/Keyword: 선회난류

Search Result 86, Processing Time 0.022 seconds

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.

Performance Enhancement of Flue Gas Desulfurization System with Structural Constraints in 500 MW Coal Fired Power Plants (구조적 제약조건을 갖는 500 MW 석탄화력발전소 탈황설비의 성능개선)

  • Kim, Jong-Sung;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.30-35
    • /
    • 2019
  • To meet both increasing social demand for reduction of fine dust and the strengthened air pollutant emission standards, this paper indicated performance enhancement of FGD with structural constraints in 500 MW coal fired thermal power plant's. Through modifying internal facilities for flue gases to make swirl in the absorption tower, it made turbulence and increased the efficiency of material transfer, the reaction area and time with the limestone slurry. Therefore, it could reduce dust and enhance the performance of collecting the SO2. As a result, desulfurization efficiency was improved from 91.61% to 98.43% and dust removal efficiency was improved from 77.4% to 87.08%. Emission density is 7.85 ppm of SO2 and 4.67 mg/㎥ of dust. This is a level that satisfies emission limit of 25 ppm of SO2 and 5 mg/㎥ of dust which are the air pollutant emission standards of 2023. The performance enhancement method of this study is expected to be effectively applied to other coal-fired power plants with similar constraints.

Characteristics of Flow Uniformity at the Section before Tube Bank with the Change of Expansion Inlet Duct Shape in a Heat Recovery Steam Generator (배열회수보일러 입구 덕트 확관 형상 변화에 따른 전열관군 전단 유동균일화 특성)

  • Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The present study has been carried out to analyze the flow characteristics in the inlet expasion duct of a heat recovery steam generator by using numerical flow analysis. The inlet of HRSG corresponds the outlet of gas turbine exit and the flow after gas turbine has strong swirl flow and turbulence. The inlet flow condition of HRSG should be included the exit flow characteristics of gas turbine. The present numerical analysis adopted the flow analysis result of gas turbine exit flow as a inlet flow condition of HRSG analysis. Because the flow characteristics in the inlet duct of the tube bank is strongly related to the performance of a HRSG, it is most important for the optimal design of HGSG to understanding the flow phenomena in the inlet duct of HRSG. From the present study, the position of breakpoint in the inlet expansion duct should be lower than the reference breakpoint position for the optimal flow uniformity before the tube bank.

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

Effects of Combustion Instability by Swirl Intensity in Hybrid Rocket (스월 강도에 따른 하이브리드 로켓의 연소 불안정 영향)

  • Kim, Jungeun;Lee, Sulha;Kim, Ji Eun;Kim, Ji Hye;Yoo, Min Jeong;Han, Songee;Lee, Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.672-674
    • /
    • 2017
  • The addition of swirl is a common technique used in premixed combustors in order to gain stability of the combustion with the improvements in mixing characteristics. recent experimental studies have observed that the addition of swirl oxidizer flow can effectively reduce the combustion instability in hybrid rocket. Investigation was continued to analyze the effect of the swirl on the internal flow of hybrid rocket engine main combustion chamber. The flow influenced by wall blowing as a representation of fuel evaporation interacts with swirling flow. Swirl angle increases, the amplitude of the combustion pressure decrease as the unstable combustion processes. These results suggest that the oxidizer swirling flow by the swirl angle causes the change of the turbulent flow characteristics inside the combustion chamber and suppresses the factors causing the combustion instability.

  • PDF

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.