• Title/Summary/Keyword: 선회계수

Search Result 74, Processing Time 0.02 seconds

Characteristics of Flow Pattern and Mass Transfer in a Shaking Vessel with Figure-Eight Circulating Motion (8자 진동교반에 의한 교반조내 유동상태 및 물질전달 특성)

  • Lee, Young Sei;Kato, Yoshihito
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.174-180
    • /
    • 2015
  • The flow pattern and the solid-liquid mass transfer coefficient in figure-eight shaking vessels were observed by experimental method. The flow patterns, mixing time, power consumption and mass transfer coefficient in the figureeight shaking vessels changed irregularly with increase in the shaking frequency. Any frequency, even in the Fr = 0.095 or more became clear experimentally. The region of the optimum operating condition of the figure-eight shaking was larger than that of the reciprocal shaking. The solid-liquid mass transfer coefficient was correlated with the same correlation as that of the rotary shaking vessel of existing. The gas-liquid mass transfer coefficient of the figure-eight shaking vessel was also correlated with the same type of correlation as that of the rotary shaking vessel of existing.

Evaluation of Compaction Properties of Subgrade Soil by Gyratory Compaction Curve (선회다짐곡선특성을 이용한 노상토의 다짐도 평가)

  • Lee, Kwan-Ho;Cha, Min-Kyung;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • Compacted soil are used in almost roadway construction with compaction of soil. The direct consequence of soil compaction is densification, which in turn results in higher strength, lower compressibility, and lower permeability. The standard and modified Proctor tests are the most common methods. Both of these tests utilize impact compaction, although impact compaction shows no resemblance to any type of field compaction and is ineffective for granular soils. It has been dramatic advances in field compaction equipment. Therefore, the Proctor tests no longer represent the maximum achievable field density. The main objectives of this research are a survey of current field compaction equipment, laboratory investigation of compaction characteristics, and field study of compaction characteristics. The findings from the laboratory and compaction program were used to establish preliminary guidelines for suitable laboratory compaction procedures.

Characteristics of Ammonia Removal from a Synthetic Wastewater in a Jet Loop Reactor with a Two-fluid Venturi-type Swirl Nozzle (이유체 벤츄리형 선회 노즐이 장착된 제트 루프 반응기에서 합성폐수 중의 암모니아 제거특성)

  • Noh, Da-ji;Yun, Chan-Su;Lim, Jun-Heok;Won, Yong-Sun;Lee, Tae-Yoon;Lee, Jea-Keun
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.205-212
    • /
    • 2017
  • We investigated the performance of a jet loop reactor (JLR) with the two-fluid venturi-type swirl nozzle (TVSN) during experiment for ammonia removal by air stripping from a synthetic wastewater, and compared it with that of a JLR with the two-fluid venturi-type conventional nozzle (TVCN), with the variation of pH, liquid circulation rate ($Q_L$), and air flow rate ($Q_G$). Their performance levels were compared based on the ammonia removal efficiency and overall mass transfer coefficient ($K_La$). Investigated parameters in a JLR were pH (10-12), air flow rate ($Q_G=5-20L\;min^{-1}$), and liquid circulation rate ($Q_L=25-35L\;min^{-1}$). Throughout the experiment, the ammonia removal efficiency and $K_La$ in a JLR with TVSN was higher than in a JLR with TVCN. This may be due to the enhanced turbulent intensity by swirling flow formed in the JLR with TVSN compared to that with TVCN. Further, we obtained higher $K_La$ when pH, $Q_L$ and $Q_G$ were increased. In particular, $K_La$ was increased more efficiently by increasing $Q_G$ than by increasing pH and $Q_L$.

Analysis of a 2x radial vibration due to angular misalignment (각축어긋남에 의한 2x 축진동해석)

  • 이영섭;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.194-199
    • /
    • 1998
  • 축어긋남이 있는 회전체-볼베어링계에 대한 동적모델을 이용하여, 각축어긋남에 의한 2x 축진동현상을 조사하였다. 이때 유효베어링강성계수를 정의하여 축어긋남과 불균형량에 의해 발생되는 강성계수의 평균과 동기 변화성분을 운동방정식에 도입하였다. 수치해석과 실험결과는 각축어긋남에 의한 바나나 형태의 선회궤적이 회전체계 임계속도의 1/2이 도는 속도영역에서 뚜렷이 나타나는 것을 보여주었다.

  • PDF

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Horizontal Stability Estimation of Underwater Vehicle Using Rotating Arm Test (강제선회시험을 이용한 수중운동체의 수평면 안정성 평가에 관한 연구)

  • Han, Ji-Hun;Jeong, Jeong-Jae;Lee, Seung-Bum;Jang, Geun-Young;Lee, Seung-Keon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.110-112
    • /
    • 2016
  • In this paper, the captive model test of submerged body using RA test was carried out at the Square Basin. The target model is a submarine with four different types. For the comparison between theory and measurement, hydrodynamic coefficients are calculated according to the described method and compared with RA measurements on Submarine models. in addition, horizontal stability index of underwater vehicle was checked.

  • PDF

Development & Test of A Small-Sized Autonomous Underwater Vehicle "BOTO" (소형 자율무인잠수정 "BOTO"의 개발 및 실험)

  • Byun, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.103-109
    • /
    • 2012
  • Samsung Thales has developed a small-sized autonomous underwater vehicle "BOTO" verified by a mathematical model simulation. The hydrodynamic coefficients and drag force were experimented at circulating water channel for validating cruising performance of the AUV. Based on the mathematical model, we simulated turning radius and way-point tracking on horizontal plane using way-point tracking algorithm. In this paper we introduce the vehicle system and the sea trial test results will be shown.

Deformational Characteristics of Compacted Subgrade Soils in Korea with Specimen Construction Methods (시편 성형기법에 따른 국내 다짐 노상토의 변형특성)

  • Kweon, Gi-Chul;Hwang, Chang-Il
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.55-63
    • /
    • 2007
  • Deformational characteristics of subgrade soils are important properties in the mechanistic analysis and design of pavement system. In this study, to evaluate the effect of specimen construction methods on deformational characteristics of subgrade soils in Korea, resonant column tests were performed for specimens constructed by various methods. Specimen construction method affected to the modulus value but the variation in the normalized modulus reduction curve was almost identical. The effects of specimen construction method on modulus are decreased with increasing confining pressure. The average maximum variation in the modulus value with different specimen construction methods was estimated as 16.8%. The differences in the modulus value of the specimens with same water content and dry density conditions that made by gyratory compaction and impact compaction were very small within 5.2%. The impact compaction method was proposed as a specimen construction method for determining the design input parameter testing considering that impact compaction method is much simpler and require less expensive specimen construction equipment and setup than gyratory compaction method.

  • PDF

A Numerical Study on Evaporation and Combustion of Liquid Spray (액체분무의 증발 및 연소에 관한 수치적 연구)

  • 정인철;이상용;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2073-2082
    • /
    • 1991
  • The vaporization and combustion of liquid spray in a cylindrical shape combustor was studied numerically. Mixture of liquid drops and air was assumed to be ejected from the center-hole and assisting air from the concentric annulus with swirling. Eulerian-Lagrangian scheme was adopted for the two phase calculation, and the interactions between the phases were considered with the PSIC model. Also adopted were the infinite conductivity model for drop vaporization, the equation of Arrhenius and the eddy break-up model for reaction rate, and the k-epsilon model for turbulence calculations. Gas flow patterns, drop trajectories and contours of temperature and mass fractions of the gas species were predicted with swirl number, drop diameter, and equivalence ratio taken as parameters. Calculations show that the vaporization and the consequent combustion efficiency enhance with the increase of the swirl number and/or with the decrease of drop size, and the higher maximum temperature is attained with the higher equivalence ratio.