• 제목/요약/키워드: 선형 SVM

검색결과 104건 처리시간 0.032초

HD Projection TV를 위한 비선형 SVM 회로의 구현 (Implementation of Nonlinear SVM for HD Projection TV)

  • 이광순;권용대;이건일;송규익;최덕규;한찬호;김은수
    • 대한전자공학회논문지SP
    • /
    • 제38권2호
    • /
    • pp.191-198
    • /
    • 2001
  • HD ProjectionTV에서 CRT의 전자총 및 투영되는 스크린 상에서의 빔 프로파일에 의한 화질의 열화를 개선시키기 위한 방법으로는 영상신호의 진폭 변화량에 따라 수평 편향 속도를 선형적으로 변조시키는 SVM(Scan Velocity Modulation)방식이 있다. 그런데, 선형 SVM방식에서의 화질 개선은 입력 영상신호의 진폭변화에 대해 균일하지 않다. 본 논문에서는 HD Projection TV에서의 빔 프로파일의 특성을 분석하여 모델링하고, 고역의 HD 신호가 입력될 때 SVM효과를 모의실험을 통해 해석하였다. 그리고, 이를 근거로 영상신호에 따라 SVM량을 비선형적으로 조절하는 비선형 SVM방식이 HD Projection TV에서도 필요함을 이론적으로 제시하였다. 이를 바탕으로 SVM 회로를 직접 하드웨어로 제작하여 실제 TV에 장착하여 실험하였다. 실험 결과 영상 신호의 진폭이 작은 영역과 큰 영역의 경계부분에서 발생하는 화질의 열화를 거의 일정하게 개선시킬 수 있음을 확인 하였다.

  • PDF

VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구 (VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram)

  • 김성철;유환조
    • 한국멀티미디어학회논문지
    • /
    • 제13권5호
    • /
    • pp.722-729
    • /
    • 2010
  • 예측 문제를 해결하기 위한 데이타마이닝 기법은 다양한 분야에서 주목받고 있다. 이것에 대한 한 예로 컴퓨터-기반의 질병의 예측 혹은 진단은 CDSS(Clinical Decision support System)에서 가장 중요한 요소이기도 하다. 이러한 예측 문제를 해결하기 위해서 RBF커널 같은 비선형 커널을 사용한 SVM이 가장 널리 사용되고 있는데, 이는 비선형 SVM이 어떠한 다른 분류기법보다 정확한 성능을 보이기 때문이다. 하지만 비선형 SVM을 사용한 경우에는 모델내부를 시각화하는 일이 어려워서 예측결과에 대한 직관적인 이해가 힘들고, 의학 전문가들은 이러한 비선형 SVM의 사용을 기피하고 있는 실정이다. Nomogram은 SVM을 시각화하기 위해 제안된 기법이다. 하지만 이는 선형 SVM의 경우에만 사용이 가능하고. 이 문제를 해결하기 위해서 LRBF 커널이 제안된 바 있다. LRBF 커널은 기존의 RBF 커널을 사용한 SVM과 대등한 결과를 보이면서도 예측결과의 선형적 분석도 가능하게 한다. 본 논문에서는 노모그램(Nomogram)과 LRBF 커널을 사용한 SVM이 통합되어 있는 예측 툴 VRIFA를 제안한다. 이 툴은 사용자와 상호작용하며 비선형 SVM 모델의 내부구조를 데이타의 각 속성별로 보여주는 방법으로 사용자가 예측결과를 직관적으로 이해하도록 도와준다. VRIFA는 Nomogram기반의 피쳐선택(feature selection) 기능도 포함하고 있는데, 이 기능은 예측결과에 부정적인 영향을 끼치거나 중복된 연관성을 보이는 속성을 제거함으로써 모델의 정확도를 높이는 데 기여한다. 그리고 데이터에 포함된 클래스의 비율이 한 쪽으로 치우쳐져 있는 경우에는 ROC 곡선 넓이(AUC)를 예측결과를 평가하기 위한 측도로 사용할 수 있다. 이 툴은 컴퓨터-기반의 질병 예측 혹은 질병의 위험 요소 분석에 대해 연구하는 연구자들에게 유용하게 사용될 것으로 전망하는 바이다.

SVM 분류기를 이용한 문서 범주화 연구 (An Experimental Study on Text Categorization using an SVM Classifier)

  • 정영미;임혜영
    • 정보관리학회지
    • /
    • 제17권4호
    • /
    • pp.229-248
    • /
    • 2000
  • 문서 범주화에 이용되는 학습알고리즘 중에서 이원 패턴인식 문제를 해결하기 위해 제안된 SVM은 다른 분류기 보다 우수한 성능을 보이고 있다. 본 연구에서는 Reuters-21578 (ModApte 분할판)을 대상으로 SVM 분류기를 이용하여 단어빈도, 역문헌빈도, 문헌길이 정규화 공식을 자질에 대한 가중치로 적용하여 성능을 평가하고, 선형 SVM과 비선형 SVM의 분류 성능을 비교하였다. 또한 이원 분류기를 승자독식 방법과 쌍단위 분류방법에 의해 다원 분류기로 확정하여 실험한 후 이원 분류기와의 성능을 비교 분석하였다.

  • PDF

Support Vector Machine과 상태공간모형을 이용한 단변량 수문 시계열의 동역학적 비선형 예측모형 (Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model)

  • 권현한;문영일
    • 대한토목학회논문집
    • /
    • 제26권3B호
    • /
    • pp.279-289
    • /
    • 2006
  • 최근에 수문시계열로부터 저차원의 비선형 거동을 재구성하고자 하는 연구가 활발히 진행되고 있다. 이러한 관점에서 본 연구에서는 Support Vector Machine(SVM)을 이용하여 우수한 상태-공간 재구성 능력을 갖는 비선형 예측모형을 구성하여 Great Salt Lake(GSL) Volume에 적용하였다. SVM은 Kernel 함수로부터 유도된 고차원의 특성공간 안에서 선형함수의 가상공간을 이용하는 Machine Learning 방법론이다. 또한 SVM은 훈련자료로부터 얻어지는 평균제곱오차가 아닌 일반화된 오차를 최소화함으로써 상대적으로 기존 방법에 비해 적은 수의 매개변수와 과적합(over fitting)을 피하면서 비선형 함수의 최적화가 가능하다. 본 연구에서 제시한 SVM 회귀분석의 적용성은 미국의 GSL의 2주 간격 Volume을 대상으로 검토하였다. SVM을 이용한 비선형 예측모형은 GSL Volume의 2주(1-Step), 8주(4-Step)와 반복예측(Iterated Prediction, 121-Step)까지 적용되었다. 본 연구에서는 극치사상 즉, 급격한 감소 및 증가 구간을 예측하는데 있어서 훈련구간과 예측구간을 구분하여 모형의 신뢰성을 평가하였다. 예측결과SVM은 훈련자료로부터 적은 수의 관측치를 이용하여 동역학적 거동을 추출할 수 있었으며 실제 관측자료와 거의 유사한 예측이 가능함을 통계적 지표로 확인할 수 있었다. 따라서 비선형 수문시계열의 단기 예측을 위한 모형으로 적용이 가능할 것으로 판단된다.

Support Vector Machine을 이용한 문맥 민감형 융합 (Context Dependent Fusion with Support Vector Machines)

  • 허경용
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.37-45
    • /
    • 2013
  • 문맥 종속형 융합(CDF, Context Dependent Fusion)은 여러 분류기의 결과를 종합하여 성능을 향상시키는 융합 방법으로 주어진 문제의 문맥을 균일한 여러 문맥으로 나누고 각 문맥에서 문맥 종속적인 융합을 시도함으로써 기존 융합 방법에 비해 향상된 성능을 보여주었다. 하지만 CDF는 학습해야할 파라미터의 개수가 많아 학습 데이터가 적은 경우 잡음에 민감한 문제점이 있으며, 선형 알고리듬이라는 한계로 인해 문맥 추출 및 지역적 융합 과정에서 성능 저하의 원인이 된다. 본 논문에서는 CDF의 문제점을 완화할 수 있는 방법으로 SVM(Support Vector Machine)과 커널 주성분 분석을 이용한 CDF-SVM을 제안하였다. 커널 주성분 분석은 입력 벡터에 비선형 변환을 가함으로써 타원형이 아닌 비정형의 클러스터 생성이 가능하도록 해주며, SVM은 융합과정에서 비선형 경계의 생성을 가능하게 해주어 CDF의 선형성 제약을 극복하도록 해준다. 또한 목적함수에 정규화 항을 추가함으로써 잡음 민감성을 줄이도록 하였다. 제안한 CDF-SVM은 기존 CDF 및 그 변형들에 비해 나은 성능을 보여주었으며 이는 실험 결과를 통해 확인할 수 있다.

다중스케일 분석과 SVM 비선형 예측 모형을 활용한 상수도 수요량 예측기법 개발 (A development of water demand forecasting model using multiscale analysis and SVM based nonlinear prediction model)

  • 권현한;김민지;이봉국;구자용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.367-367
    • /
    • 2012
  • 기후변화로 인해 기온, 강수량, 습도 등의 기후를 예측하고 변화하는 환경에 적응해가며 생활하고 있다. 또한 여러 가지 외부적인 요인들의 영향을 받아 상수도 시설에서의 에너지 사용량도 영향을 많이 받는다. 하지만 이러한 상수도 시설의 사용량 변화로 인해 상수도 수요량의 변화량을 예측하는데 있어서 국내 연구 및 방법이 많이 부족한 상황이다. 이에 본 연구에서는 다중스케일을 기반으로 하는 비선형 예측 모형을 개발하고자 한다. 다중스케일 분석에서도 가장 우수한 분해 능력을 가지는 Wavelet Transform을 적용하여 시계열을 분해한 후 패턴인식 기반의 비선형 예측모형인 Support Vector Machine(SVM)을 적용하였다. 상수도 수요량의 예측 과정은 다음과 같다. 첫째, 상수도 수요량 자료를 Wavelet Transform 기법을 통하여 단순화 시킨다. 둘째, Global Wavelet Spectrum을 통하여 통계적으로 의미 있는 성분만을 추출하고 이를 해석 대상으로 한다. 셋째, 특정 주기를 갖는 유의한 독립성분들에 대해서 최적 지체시간을 결정한 후 SVM모형을 통해 예측 모형을 구축한다. 넷째, 나머지 성분에 대해서도 SVM 모형을 적용하여 예측을 실시한 후 앞서 예측된 성분과 모두 결합하여 최종적으로 예측시계열을 구성한다.

  • PDF

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

SVM음성인식기 구현을 위한 강인한 특징 파라메터 (Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines)

  • 김창근;박정원;허강인
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.195-200
    • /
    • 2004
  • 본 논문은 두 가지 비교 실험을 통하여 효과적 음성인식 시스템을 제안한다. 분별적 이진 패턴 분류기인 SVM(Support Vector Machines)은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있다. 본 논문에서는 학습데이터 수에 따른 HMM(Hidden Markov Model)과 SVM의 인식 성능을 비교하고, 최적의 특징 파라메터를 선택하기 위해 SVM을 이용하여 주성분해석과 독립성분분석을 적용하여 MFCC(Mel Frequency Cepstrum Coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 SVM은 HMM에 비해 적은 학습데이터에서도 높은 인식 성능을 보여주었고, 독립성분분석에 의한 특징 파라메터가 특징 공간상에서의 높은 선형 분별성에 의해 다른 특징 파라메터보다 인식 성능에서 우수함을 확인 할 수 있었다.

SVM 결정법칙에 의한 얼굴 및 서명기반 다중생체인식 시스템 (Multi-modal Biometrics System Based on Face and Signature by SVM Decision Rule)

  • 민준오;이대종;전명근
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.885-892
    • /
    • 2004
  • 본 논문에서는 SVM에 기반을 둔 결정법칙에 의해 얼굴인식과 서명인식시스템으로 구성된 다중생체인식시스템을 제안하고자 한다. 이를 위해 퍼지 선형판별기법(Fuzzy Linear Discriminant Analysis : Fnzzy LDA)를 이용한 얼굴인식과 선형판별분석기법과 구간매칭기법을 이용한 서명인식을 구축하였다. 두 개의 단일생체인식시스템을 효과적으로 융합시키기 위해 우선 독립적인 두 개의 생체인식시스템에 의해 산출된 매칭도로부터 등록자(Genuine)와 침입자(Impostor)의 확률 분포 모델을 생성한 후, SVM(Support Vector Machine)에 의해 최종 인증하는 구조로 되어있다. 제안된 방법인 SVM기반 결정법칙을 적용하여 실험한 결과 기존에 결정법칙으로 많이 사용되고 있는 가중치합과 결정트리 방식에 비해 각각 $1.654{\%}$$3.3{\%}$의 인식률 향상을 나타내 제안된 방법의 우수성을 나타냈다.

Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구 (Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network)

  • 박준철;노태성;최동환;이창호
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.102-109
    • /
    • 2006
  • 본 논문에서 항공기용 터보 축 엔진의 결함 진단 알고리즘을 개발하기 위해 Support Vector Machine(SVM)과 인공신경망(ANN)을 이용하였다. 신경망을 이용한 시스템은 비선형성이 과도한 데이터를 학습할 때 지역 최소점(Local Minima)에 빠져 분류 정확률이 낮아질 수 있다. 이러한 위험성을 보안하기 위해 SVM에 의한 ANN의 분할 학습 알고리즘(SLA)을 제안하였다. 이것은 SVM을 이용하여 결함 위치를 판별 한 후 신경망이 선택적으로 학습을 하는 방법으로 학습 데이터의 비선형성을 줄여 분류 정확률을 높이기 때문에 신경망을 단독으로 사용할 때보다 개선된 성능을 보여주었다.