• Title/Summary/Keyword: 선형 프로브

Search Result 26, Processing Time 0.026 seconds

Non-contact Stress Measurement in Steel Member of PSC Box Bridge Using Raman Spectroscopy (라만 형광 분광법을 이용한 PSC 박스교 인장케이블 응력측정방법 연구)

  • Kim, Jongwoo;Kim, Namgyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.130-134
    • /
    • 2019
  • In this paper, a laser-based non-contact load cell is newly developed for measuring forces in prestressed concrete tendons. First, alumina particles have been sprayed onto an empty load cell which has no strain gauges on it, and the layer has been used as a passive stress sensor. Then, the spectral shifts in fluorescence spectroscopy have been measured using a laser-based spectroscopic system under various force levels, and it has been found that the relation of applied force and spectral shift is linear in a lab-scale test. To validate the field applicability of the customized load cell, a full-scale prestressed concrete specimen has been constructed in a yard. During the field test, it was, however, found that the coating surface has irregular stress distribution. Therefore, the location of a probe has to be fixed onto the customized load cell for using the coating layer as a passive stress sensor. So, a prototype customized load cell has been manufactured, which consists of a probe mount on its casing. Then, by performing lab-scale uniaxial compression tests with the prototype load cell, a linear relation between compression stress and spectrum shift at a specific point where laser light had been illuminated has been detected. Thus, it has a high possibility to use the prototype load cell as a force sensor of prestressed concrete tendons.

Evaluation and Test Method Characterization for Mechanical and Electrical Properties in BGA Package (BGA 패키지의 기계적${\cdot}$전기적 특성 평가 및 평가법)

  • Koo Ja-Myeong;Kim Jong-Woong;Kim Dae-Gon;Yoon Jeong-Won;Lee Chang-Yong;Jung Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.289-299
    • /
    • 2005
  • The ball shear force was investigated in terms of test parameters, i.e. displacement rate and probe height, with an experimental and non-linear finite element analysis for evaluation of the solder joint integrity in area array packages. The increase in the displacement rate and the decrease in the probe height led to the increase in the shear force. Excessive probe height could cause some detrimental effects on the test results such as unexpected high standard deviation and probe sliding from the solder ball surface. The low shear height conditions were favorable for assessing the mechanical integrity of the solder joints. The mechanical and electrical properties of the Sn-37Pb/Cu and Sn-3.5Ag/Cu BGA solder joints were also investigated with the number of reflows. The total thickness of the intermetallic compound (IMC) layers, consisting of Cu6Sn5 and Cu3Sn, was increased as a function of cubic root of reflow time. The shear force was increased up to 3 or 4 reflows, and then was decreased with the number of reflows. The fracture occurred along the bulk solder, in irrespective of the number of reflows. The electrical resistivity was increased with increasing the number of reflows.

  • PDF

Plasma Potential of Atmospheric Plasma Double Jets (대기압 플라즈마 이중 제트의 플라즈마 전위)

  • Kang, Han-Lim;Kim, Jung-Hyun;Kim, Hyun-Chul;Han, Sang-Ho;Cho, Gunagsup
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.312-321
    • /
    • 2012
  • The electric potential of plasma column is measured with the high voltage probe in a pair of atmospheric plasma jets operated by AC-voltage. According to the polarity of voltage applied to the electrodes, the polarity of plasma column potential has the same polarity of applied voltage. The high potential of plasma column at the side of high voltage electrode is decreased linearly along the plasma column to the ground side. Therefore, the plasma column seams to be a kind of resistor whose resistivity is a few 10s $M{\Omega}/m$. In the experiment of double-jets system, the polarity of plasma potential is verified to be the same polarity to the applied voltage. When the different voltage polarities are applied to the electrodes of double plasma jets, the attractive force is acted between two plumes at the merged plasma and the plasma potential is measured to be low as a few 10s V. When the same polarity of voltage is applied to the electrode, the repulsive force is acted and the plasma potential is measured to be high as a several 100s V at the merged plumes. In the exposure of plasma plume on the bio-substrate with the double plasma jets, the electric shock and thermal damage might be proportional to the plasma power which is the multiplication of the plasma potential and the plasma current.

Three-dimensional Imaging with an Endoscopic Optical Coherence Tomography System for Detection of Airway Stenosis (기도협착 측정을 위한 내시경 광 결맞음 단층촬영법을 이용한 3차원 이미징)

  • Kwon, Daa young;Oak, Chulho;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.243-248
    • /
    • 2019
  • The respiratory tract is an essential part of the respiratory system involved in the process of respiration. However, if stenosis occurs, it interferes with breathing and can even lead to death. Asthma is a typical example of a reversible cause of airway narrowing, and the number of patients suffering from acute exacerbation is steadily increasing. Therefore, it is important to detect airway narrowing early and prevent the patient's condition from worsening. Optical coherence tomography (OCT), which has high resolution, is suitable for observing the microstructure of tissues. In this study we developed an endoscopic OCT system. We combined a 1300-nm OCT system with a servo motor, which can rotate at a high speed. A catheter was pulled back using a linear stage while imaging with 360° rotation by the motor. The motor was selected considering various requirements, such as torque, rotational speed, and gear ratio of pulleys. An ex vivo rabbit tracheal model was used as a sample, and the sample and catheter were immobilized by acrylic structures. The OCT images provided information about the structures of the mucosa and submucosa. The difference between normal and stenosed parts in the trachea was confirmed by OCT. Furthermore, through a three-dimensional (3-D) reconstruction process, it was possible to identify and diagnose the stenosis in the 3-D image of the airway, as well as the cross-sectional image. This study would be useful not only for diagnosing airway stenosis, but also for realizing 3-D imaging.

Correlation Between Mechanical and Magnetic Properties for Cold Rolled Carbon Steel Sheet (냉연강판의 기계적 물성과 자기적 특성의 상관관계)

  • Park, S.Y.;Ryu, K.S.;Yi, J.K.;Park, J.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.211-215
    • /
    • 2006
  • Measurement methods in order to measure the mechanical properties nondestructively have been studied. The mechanical properties of the structural and turbine rotor steels are related with their magnetic properties. If the magnetic properties of the cold rolled carbon steel sheet (CR) for a car are measured nondestructively, its mechanical properties are analogized by their magnetic properties. And then the mechanical properties are monitored on-line by measuring the magnetic properties. We prepared three CR materials, CBQ 3060, CBQ 3041, and CBQ 3036, were prepared in order to measure their mechanical and magnetic properties. The Vickers hardness,yield strength, and tensile strength were measured by ASTM E 8M, and the reversible magnetic permeability was measured by the surface type probe. The coercivity calculated by the peak interval of reversible magnetic permeability increased linearly with the increase of Vickers hardness, yield strength, and tensile strength. The amplitude of the peak interval of reversible magnetic permeability drastically decreased when the lift-off was increased.

Development of EPICS-IOC Measuring Magnetic Field at A/Q separator for Separating Specific Ions (가속이온 분리를 위한 A/Q Separator에서 자장측정용 EPICS-IOC 개발)

  • Lee, Su-Yeong;Yim, Hee-Joong;Kim, Jae-Hong;Mun, Jun-Yeong;Park, Mi-Jeong;Lee, Sang-Il;Lee, Dong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • The installation and performance test of the ISOL (Isotope Separation On Line) system for the generation and separation of Rare Isotopes (RI) beams is in progress at the Rare Isotope Science Project (RISP), Institute for Basic Science (IBS). The various RI beams generated by the ISOL target/ion source go through the beam lines and separators, and only the RI beam desired by the user is selected and transmitted to the superconducting linear accelerator at the downstream of the ISOL. In the ISOL system, two separators are installed to separate a specific RI beam, and control is performed by the Experimental Physics and Industrial Control System (EPICS). In this study, an EPICS IOC (Input-Output Control) was developed to measure the magnetic field of a dipole magnet for mass separation of a multivalent (n+) RI beam in the A/Q separator, which is one of the ISOL RI beam separators. The operational stability of the A/Q separator was tested through a magnetic field measurement using a Hall probe.