• Title/Summary/Keyword: 선형 판별 분석(LDA)

Search Result 66, Processing Time 0.027 seconds

Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI (BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석)

  • Tong, Yang;Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1333-1342
    • /
    • 2018
  • Until now, Electroencephalography(: EEG) has been the most important and convenient method for the diagnosis and treatment of epilepsy. However, it is difficult to identify the wave characteristics of an epileptic EEG signals because it is very weak, non-stationary and has strong background noise. In this paper, we analyse the effect of dimensionality reduction methods on Epileptic EEG feature selection and classification. Three dimensionality reduction methods: Pincipal Component Analysis(: PCA), Kernel Principal Component Analysis(: KPCA) and Linear Discriminant Analysis(: LDA) were investigated. The performance of each method was evaluated by using Support Vector Machine SVM, Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR) and Random Forest(: RF). From the experimental result, PCA recorded 75% of highest accuracy in SVM, LR and K-NN. KPCA recorded 85% of best performance in SVM and K-KNN while LDA achieved 100% accuracy in K-NN. Thus, LDA dimensionality reduction is found to provide the best classification result for epileptic EEG signal.

Identification of Sweet Pepper Greenhouse by Analysis of Environmental Data in Greenhouse (온실 내 환경데이터 분석을 통한 파프리카 온실의 식별)

  • Kim, Na-eun;Lee, Kyoung-geun;Lee, Deog-hyun;Moon, Byeong-eun;Park, Jae-sung;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • In this study, analysis was performed to identify three greenhouses located in the same area using principal component analysis (PCA) and linear discrimination analysis (LDA). The environmental data in the greenhouse were from 3 farms in the same area, and the values collected at 1 hour intervals for a total of 4 weeks from April 1 to April 28 were used. Before analyzing the data, it was pre-processed to normalize the data, and the analysis was performed by dividing it into 80% of the training data and 20% of the test data. As a result of PCA and LDA analysis, it was found that PCA classification accuracy was 57.51% and LDA classification was 67.06%, indicating that it can be classified by greenhouse. Based on the farmhouse data classified in advance, the data of the new environment can be classified into specific groups to determine the tendency of the data. Such data is judged to be a way to increase the utilization of data by facilitating identification.

A Study on Face Recognition System Using LDA and SVM (LDA와 SVM을 이용한 얼굴 인식 시스템에 관한 연구)

  • Lee, Jung-Jai
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1307-1314
    • /
    • 2015
  • This study proposed a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. The algorithm proposed detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). Also, by applying the feature vector obtained for SVM, face areas can be tested. After the testing, the feature vector is applied to LDA and using Euclidean distance in the 2nd dimension, the final analysis and matching is performed. The algorithm proposed in this study could increase the stability and accuracy of recognition rates and as a large amount of calculation was not necessary due to the use of two dimensions, real-time recognition was possible.

Robust Face Recognition Against Illumination Change Using Visible and Infrared Images (가시광선 영상과 적외선 영상의 융합을 이용한 조명변화에 강인한 얼굴 인식)

  • Kim, Sa-Mun;Lee, Dea-Jong;Song, Chang-Kyu;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • Face recognition system has advanctage to automatically recognize a person without causing repulsion at deteciton process. However, the face recognition system has a drawback to show lower perfomance according to illumination variation unlike the other biometric systems using fingerprint and iris. Therefore, this paper proposed a robust face recogntion method against illumination varition by slective fusion technique using both visible and infrared faces based on fuzzy linear disciment analysis(fuzzy-LDA). In the first step, both the visible image and infrared image are divided into four bands using wavelet transform. In the second step, Euclidean distance is calculated at each subband. In the third step, recognition rate is determined at each subband using the Euclidean distance calculated in the second step. And then, weights are determined by considering the recognition rate of each band. Finally, a fusion face recognition is performed and robust recognition results are obtained.

Feature extraction based on DWT and GA for Gesture Recognition of EPIC Sensor Signals (EPIC 센서 신호의 제스처 인식을 위한 이산 웨이블릿 변환과 유전자 알고리즘 기반 특징 추출)

  • Ji, Sang-Hun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Young-Chul
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.612-615
    • /
    • 2016
  • 본 논문에서는 EPIC(Electric Potential Integrated Circuit) 센서를 통해 추출된 동작신호에 대해 이산 웨이블릿 변환(Discrete Wavelet Transform : DWT)과 선형 판별분석(Linear Discriminant Analysis : LDA), Support Vector Machine(SVM)을 사용하는 동작 분류 시스템을 제안한다. EPIC 센서 신호에 대해 이산 웨이블릿 변환을 사용하여 웨이블릿 계수인 근사계수(approximation coefficients)와 상세계수(detail coefficients)를 구한 후, 각각의 웨이블릿 계수에 대해 특징 파라미터를 추출한다. 이 때, 특징 파라미터는 14개의 통계적 특징 추출 파라미터 중에 유전자 알고리즘(Genetic Algorithm : GA)을 통하여 선택한 우수한 특징 파라미터이다. 웨이블릿 계수들에서 추출한 특징 파라미터는 선형 판별분석을 적용하여 차원을 축소하고 SVM의 훈련 및 분류에 사용한다. 실험결과, 4가지 동작에 대한 EPIC 센서 신호분류에서 제안된 방법의 분류율이 99.75%로 원신호에 대한 HMM 분류율 97% 보다 높은 정확률을 보여주었다.

Verifying the Classification Accuracy for Korea's Standardized Classification System of Research F&E by using LDA(Linear Discriminant Analysis) (선형판별분석(LDA)기법을 적용한 국가연구시설장비 표준분류체계의 분류 정확도 검증)

  • Joung, Seokin;Sawng, Yeongwha;Jeong, Euhduck
    • Management & Information Systems Review
    • /
    • v.39 no.1
    • /
    • pp.35-57
    • /
    • 2020
  • Recently, research F&E(Facilities and Equipment) have become very important as tools and means to lead the development of science and technology. The government has been continuously expanding investment budgets for R&D and research F&E, and the need for efficient operation and systematic management of research F&E built up nationwide has increased. In December 2010, The government developed and completed a standardized classification system for national research F&E. However, accuracy and trust of information classification are suspected because information is collected by a method in which a user(researcher) directly selects and registers a classification code in NTIS. Therefore, in the study, we analyzed linearly using linear discriminant analysis(LDA) and analysis of variance(ANOVA), to measure the classification accuracy for the standardized classification system(8 major-classes, 54 sub-classes, 410 small-classes) of the national research facilities and equipment established in 2010, and revised in 2015. For the analysis, we collected and used the information data(50,271 cases) cumulatively registered in NTIS(National Science and Technology Service) for the past 10 years. This is the first case of scientifically verifying the standardized classification system of the national research facilities and equipment, which is based on information of similar classification systems and a few expert reviews in the in-outside of the country. As a result of this study, the discriminant accuracy of major-classes organized hierarchically by sub-classes and small-classes was 92.2 %, which was very high. However, in post hoc verification through analysis of variance, the discrimination power of two classes out of eight major-classes was rather low. It is expected that the standardized classification system of the national research facilities and equipment will be improved through this study.

Study of Traffic Sign Auto-Recognition (교통 표지판 자동 인식에 관한 연구)

  • Kwon, Mann-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5446-5451
    • /
    • 2014
  • Because there are some mistakes by hand in processing electronic maps using a navigation terminal, this paper proposes an automatic offline recognition for traffic signs, which are considered ingredient navigation information. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which have been used widely in the field of 2D face recognition as computer vision and pattern recognition applications, was used to recognize traffic signs. First, using PCA, a high-dimensional 2D image data was projected to a low-dimensional feature vector. The LDA maximized the between scatter matrix and minimized the within scatter matrix using the low-dimensional feature vector obtained from PCA. The extracted traffic signs under a real-world road environment were recognized successfully with a 92.3% recognition rate using the 40 feature vectors created by the proposed algorithm.

Acoustic parameters for induced emotion categorizing and dimensional approach (자연스러운 정서 반응의 범주 및 차원 분류에 적합한 음성 파라미터)

  • Park, Ji-Eun;Park, Jeong-Sik;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.117-124
    • /
    • 2013
  • This study examined that how precisely MFCC, LPC, energy, and pitch related parameters of the speech data, which have been used mainly for voice recognition system could predict the vocal emotion categories as well as dimensions of vocal emotion. 110 college students participated in this experiment. For more realistic emotional response, we used well defined emotion-inducing stimuli. This study analyzed the relationship between the parameters of MFCC, LPC, energy, and pitch of the speech data and four emotional dimensions (valence, arousal, intensity, and potency). Because dimensional approach is more useful for realistic emotion classification. It results in the best vocal cue parameters for predicting each of dimensions by stepwise multiple regression analysis. Emotion categorizing accuracy analyzed by LDA is 62.7%, and four dimension regression models are statistically significant, p<.001. Consequently, this result showed the possibility that the parameters could also be applied to spontaneous vocal emotion recognition.

  • PDF

Facial Impression Analysis Using SVM (SVM을 이용한 얼굴 인상 분석)

  • Jang, Kyung-Shik;Woo, Young-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.965-968
    • /
    • 2007
  • In this paper, we propose an efficient method to classify human facial impression using face image. The features that represent the shape of eye, jaw and face are used. The proposed method employs PCA, LDA and SVM in series. Human face has been classified for 8 facial impressions. The experiments have been performed for many face images, and show encouraging result.

  • PDF

Voice Activity Detection in Noisy Environment based on Statistical Nonlinear Dimension Reduction Techniques (통계적 비선형 차원축소기법에 기반한 잡음 환경에서의 음성구간검출)

  • Han Hag-Yong;Lee Kwang-Seok;Go Si-Yong;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.986-994
    • /
    • 2005
  • This Paper proposes the likelihood-based nonlinear dimension reduction method of the speech feature parameters in order to construct the voice activity detecter adaptable in noisy environment. The proposed method uses the nonlinear values of the Gaussian probability density function with the new parameters for the speec/nonspeech class. We adapted Likelihood Ratio Test to find speech part and compared its performance with that of Linear Discriminant Analysis technique. In experiments we found that the proposed method has the similar results to that of Gaussian Mixture Models.