• 제목/요약/키워드: 선형 터빈 익열

검색결과 2건 처리시간 0.016초

탈설계점에서의 선형 터빈 익열 끝벽 열(물질)전달 특성 (Endwall Heat (Mass) Transfer Characteristics of a Linear Turbine Cascade at Off-Design Conditions)

  • 이상우;박진재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1092-1097
    • /
    • 2004
  • The heat (mass) transfer characteristics on the endwall surface of a first-stage linear turbine rotor cascade at off-design conditions has been investigated by employing the naphthalene sublimation technique. The experiments are carried out at the Reynolds number of $2.78{\times}10^{5}$ for two incidence angles of -5% and +5%. The positive incidence angle results in intensification of the pressure-side leg of a leading-edge horseshoe vortex, which delivers higher heat transfer along its trace. On the other hand, the negative incidence angle show an opposite tendency.

  • PDF

연소기 출구 난류 상태에서의 터빈 익열 끝벽 열(물질)전달 특성 (Endwall Heat (Mass) Transfer in a Turbine Cascade Under Combustor-Level High Free-Stream Turbulence)

  • 전상배;이상우;박병규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.759-764
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade passage under a combustor-level high free-stream turbulence with a large length scale. Local heat (mass) transfer coefficients are measured by using the naphthalene sublimation technique. The result shows that local heat (mass) transfer on the endwall is greatly enhanced in the central region of the turbine passage, but there is no noticeable change in the local heat (mass) transfer in the region suffering severe heat load. Under the high free-stream turbulence, the local heat (mass) transfer coefficient shows more uniform distribution and its average value across the whole endwall region is increased by 26% of that at low turbulence condition. The heat (mass) transfer data on the endwall strongly supports that well-organized vortices near the endwall tends to suffer an suppression by the high free-stream turbulence.

  • PDF