• 제목/요약/키워드: 선형 압축기 익렬

검색결과 2건 처리시간 0.014초

선형 압축기 익렬에서 발생하는 익단 누설 와류내의 레이놀즈 응력 분포 (I) -입구 유동각 변화의 영향- (Distribution of the Reynolds Stress Tensor Inside Tip Leakage Vortex of a Linear Compressor Cascade (I) - Effect of Inlet Flow Angle -)

  • 이공희;박종일;백제현
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.902-909
    • /
    • 2004
  • A steady-state Reynolds averaged Navier-Stokes simulation was conducted to investigate the distribution of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) at a constant tip clearance size of $1\%$ blade span were considered. Classical methods of solid mechanics, applied to view the Reynolds stress tensor in the principal direction system, clearly showed that the high anisotropic feature of turbulent flow field was dominant at the outer part of tip leakage vortex near the suction side of the blade and endwall flow separation region, whereas a nearly isotropic turbulence was found at the center of tip leakage vortex. There was no significant difference in the anisotropy of the Reynolds normal stresses inside tip leakage vortex between the design and off-design condition.

익단 누설 와류내의 레이놀즈 응력 분포 (Distribution of the Reynolds Stress Tensor inside Tip Leakage Vortex)

  • 이공희;박종일;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.496-501
    • /
    • 2003
  • Reynolds averaged Wavier-Stokes simulations based on the Reynolds stress model was performed to investigated the effect of inlet flow angle on the distributions of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) were considered. Stress tensor analysis, which transforms the Reynolds stress into the principal direction, was applied to show an anisotropy of the normal stresses. Whereas the anisotropy was highest in the region where the tip leakage vortex collides the suction side of the blade and tip leakage flow enters between blade tip of the pressure side and the endwall, it had the lowest value at the center of tip leakage vortex. It was also found that the magnitude of maximum shear stress at design condition was greater than that of off-design condition.

  • PDF