• Title/Summary/Keyword: 선형 스프링

Search Result 198, Processing Time 0.027 seconds

Rollover Analysis of a Bus using Beam Element and Nonlinear Spring Characteristics (보 요소와 비선형 스프링 특성을 이용한 버스 전복 해석)

  • Park, Su-Jin;Yoo, Wan-Suk;Kwon, Yuen-Ju;Kim, Jin-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In case of bus rollover, the body structure of the bus should be designed to ensure the survival space for passengers. So, this study focuses on evaluating rollover strength through a computer simulation using the commercial code, LS-DYNA3D at the initial stage of vehicle development. For this study, section structure was modeled using a simple beam element, and impact boundary conditions required by ECE(Economic Commission for Europe) regulation No.66 were applied. In order to confirm the validity of the beam element bus model, the results compared with the test results and shell element bus model. The analysis errors from beam element bus model are due to the difference in strain energy of joint area between beam and shell model. In this study, a method for the joint modeling was suggested by using nonlinear springs to which the collapse mechanisms were applied.

A Study on Dynamic Characteristics of a Catenary System (가선계의 동특성에 관한 연구)

  • 김정수;최병두
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.317-323
    • /
    • 1999
  • Dynamic characteristics of catenary that supplies electrical power to high-speed trains are investigated. A simple catenary is composed of the contact and messenger wires connected by droppers possessing bi-directional stiffness properties. For slender, repeating structures such as catenary, both the wave propagation and vibration properties need to be understood. The influence of parameters that determine catenary dynamics are investiaged through numerical simulations involving finite element models. The effects of the tension and flexural rigidity of the contact wire is first investigated. The effects of dropper characteristics are then investigated. For linear droppers wave propagation as well as modal properties are determined. For large catenary motion, droppers can be modeled as bi-directional elements possessing low stiffness in compression and high stiffness in tension. For this case, impulse response is computed and compared with the cases of linear droppers. It is found that the catenary dynamics are primarily determined by contact wire tension and dropper properties, with large responses observed in 5∼40 Hz frequency range. In particular, the dropper stiffness and spacing are found to have dominant influence on the response frequency and the wave transmission characteristics.

  • PDF

Seismic Behavior of a Bridge with Pile Bent Structures Subjected to Multi-Support Excitation (다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동)

  • Sun, Chang-Ho;Ahn, Sung-Min;Kim, Ick-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.425-434
    • /
    • 2019
  • It is important to ensure the seismic safety of pile-bent bridges constructed in areas with thick soft ground consisting of various soil layers against seismic motion in these layers. In this study, several synthetic seismic waves that are compatible with the seismic design spectrum for rock sites were generated, and the ground acceleration history of each soil layer was obtained based on ground analyses. Using these acceleration histories, each soil layer was modeled using equivalent linear springs, and multi-support excitation analyses were performed using the input motion obtained at each soil layer. Due to the nonlinear behavior of the soft soil layers, the intensity of the input ground motion was not amplified, which resulted in the elastic behavior of the bridge. In addition, inputting the acceleration history obtained from a particular layer simultaneously into all the ground springs reduced the response. Therefore, the seismic performance of this type of bridge might be overestimated if multi-excitation analysis is not performed.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 실용적 근사해석법 개발)

  • Song, Young Hun;Song, Myung Jun;Jung, Min Hyung;Park, Yung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In case of estimation of settlement for the piled-raft foundation, it is necessary to consider interaction among raft, piles and soil. But, simple analytic methods usually are not applicable to considering this complicated interaction. In this study, a computer-based approximate analytic method, HDPR, was developed in consideration of above mentioned interaction in order to analysis of settlement for the piled-raft foundation. The finite element method was applied to raft analysis by means of the Mindlin plate theory, and soil and piles were modeled as springs which were connected with their raft. The linear spring which can consider multi layered soil and the non-linear spring were applied to soil springs and pile springs, respectively. The raft-piles-soil interaction was reflected to each spring. In order to verify the developed analytic method, it was compared and analyzed with 3D FEM analysis, existing approximate analytic method and site monitoring data. As a result, the developed analytic method showed reasonable results of settlement estimations of raft and piles for each case. From a practical point of view, it is confirmed that this analytic method is able to apply for analysis and design of the piled-raft foundation.

Nonlinear Parameter Estimation of Suspension System (현가장치의 비선형 설계변수 추정)

  • 박주표;최연선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2003
  • The suspension system of cars is composed of dampers and springs, which usually have nonlinear characteristics. The nonlinear characteristics make the differences in the results of analytical models and experiments. In this study, the nonlinear system identification method which does not assume a special form for nonlinear dynamic systems and minimize the error by calculating the error reduction ratio is devised to estimate the nonlinear parameters of the suspension system of an EF-SONATA car from the field running test data. The results show that the spring has a cubic nonlinear term and the damper has a coupled nonlinear term. Also, the numerical results with the estimated nonlinear parameters agree well with the field test data for the different running speeds.

Nonlinear Dynamic Simulation using SIMULINK (SIMULINK를 이용한 비선형 동적 해석)

  • Kim Seong Keol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.105-112
    • /
    • 2005
  • Analyses of dynamic models which were one and two degrees of freedom, and had the nonlinear springs and dampings with certain polynomial functions were performed from SIMULINK in MATLAB. Those consisted of 12 programs and were built on the basis of the preceding programs fur the linear dynamic simulations. However the programs for the nonlinear simulations were quite different from those f3r the linear ones, and showed the results of the analyses in real time with animating. It was found that the programs would help us to solve any kind of nonlinear dynamic simulation with one and two degrees of freedom. Especially, the simulations for 1 DOF system with cubic nonlinear spring farce showed the results for Duffing's equation, of which phenomena were jump-up and jump-down. It will be applied to the dynamic simulation of the car seat vibration with a passenger, of which model has the equivalent nonlinear springs and is two degrees of freedom.

Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity (이선형 비선형성을 포함하는 접는 미사일 조종날개의 공탄성 해석)

  • Bae, Jae-Sung;Shin, Won-Ho;Lee, In;Shin, Young-Sug
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.29-35
    • /
    • 2002
  • Aeroelastic characteristics of a deployable missile control fin have been investigated. A deployable missile control fin is modeled by a 2-dimensional typical section. Supersonic Doublet-Point method is used for the computation of supersonic unsteady aerodynamic forces and Karpel's Minimum-State approximation is used for the aerodynamic approximation. Root-locus method and time-integration method are used for the linear and nonlinear flutter analyses. For the nonlinear flutter analysis the deployable hinge is represented by a asymmetric bilinear spring and is linearized by using the describing function method. From the flutter analyses, the effects of nonlinear parameters on the aeroelastic characteristics are investigated.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

Effects of Nonlinear Motions due to Abutment-Soil Interaction upon Seismic Responses of Multi-Span Simply Supported Bridges (비선형 교대운동이 교량구조물의 지진응답에 미치는 영향분석)

  • 김상효;마호성;이상우;경규혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • Dynamic behaviors of a bridge system with several simple spans are evaluated to examine the effects of nonlinear abutment motions upon the seismic responses of the bridge. The idealized mechanical model for the whole bridge system is developed by adopting the multi-degree-of-freedom system, which can consider various influential components. To compare the results, both linear and nonlinear abutment-backfill models are prepared. The linear system has the constant abutment stiffness, and the nonlinear system has the nonlinear stiffness considering the abutment stiffness degradation due to the abutment-soil interaction. From simulation results, the nonlinear abutment motion is found to have an important influence upon the global bridge motions. Maximum relative distances between adjacent vibration units are found to be larger than those found from the linear system. In particular, maximum relative distances at the location with the highest possibility of unseating failure are increased up to about 30% in the nonlinear system. The effects of nonlinear behavior of an abutment on the bridge seismic behaviors are also increased as the number of span increase. Therefore, it can be concluded that the abutment-soil interaction should be considered in the seismic analysis of the bridge system.

A Study on the Behavior of High-rise Buildings Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 고층 구조물의 거동에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.243-251
    • /
    • 2005
  • In the seismic design the pile foundation system of the buildings generally have been modeled to have a fixed end for its convenience and conservativeness. But it is necessary to consider the soil-structure interaction for more reliable design. In this study, the framed tube building and brace tube building with pile foundation system under earthquake were analyzed considering soil-structural interaction by 3 pile foundation modeling methods; fixed-end model, 6 springs model and p-y springs model. And 2 soil conditions were used in analysis. For each cases, displacements, drifts, maximum stress, periods and 1st mode mass participation ratios were compared.