• Title/Summary/Keyword: 선형행렬부등식 (LMI)

Search Result 70, Processing Time 0.025 seconds

Multiobjective State-Feedback Control of Smart Structural Systems (지능구조물의 다목적 상태궤환 제어)

  • 홍성일;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.452-458
    • /
    • 2003
  • This paper presents a robust vibration control methodology of smart structural systems. The governing equations and associated boundary conditions are derived by Hamilton's principle. A robust controller is designed using a linear matrix inequality (LMI) approach to the multiobjective synthesis. The design objectives are to achieve a mix of H$\sub$$\infty$/ performance and H$_2$ performance satisfying constraints on the closed-loop pole locations in the face of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the multiple modes of vibration of the piezo/beam system.

  • PDF

Parameter-dependent Robust Stability of Uncertain Singular Systems with Time-varying Delays (시변 시간지연을 가지는 불확실 특이시스템의 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • In this paper, we present a new delay-dependent and parameter-dependent robust stability condition for uncertain singular systems with polytopic parameter uncertainties and time-varying delay. The robust stability criterions based on parameter-dependent Lyapunov function are expressed as LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general algorithm for both singular systems and non-singular systems. Finally, numerical examples are presented to illustrate the feasibility and less conservativeness of the proposed method.

Robust Decoupling Control of Ship Propulsion System with CPP (CPP를 갖는 선박 추진 시스템의 강인한 Decoupling 제어)

  • 김영복;변정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.33-42
    • /
    • 1998
  • If a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved together with the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption and that the pitch angle of CPP and throtle valve angle are controlled simultaneously. In this point of view, this paper presents a controller design method for a ship propulsion system with CPP based on the decoupling control theory. To do this, Linear Matrix Inequality(LMI) approach is introduced for the control system to satisfy the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated by simulation in the all operating ranges.

  • PDF

Development of a Robust Controller for Piezo/beam Systems (압전/빔 시스템에 대한 강건제어기 개발)

  • 홍성일;박현철;박철휴
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.612-618
    • /
    • 2004
  • This paper presents a robust vibration control methodology for smart structural systems. The governing equation and associated boundary conditions of the smart structural system are derived by using Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed using a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of H$_{\infty}$ performance and H$_2$ performance satisfying constraints on the closed-loop pole locations in the presence of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the multiple vibration modes of the piezo/beam system.

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

LMI Based $H_{\infty}$ Active Vibration Control of a Structure with Output Feedback : Experiment Results (LMI에 기초한 구조물의 $H_{\infty}$ 능동진동제어 : 실험적 고찰)

  • Byun, J.H.;Kim, Y.B.;Jeong, H.J.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.83-90
    • /
    • 1999
  • 제어이론분야에서의 발전은 그러한 이론을 다방면으로 응요할 수 있는 분야를 더더욱 폭넓게 제공해 주고 있다. 자동화와 관련된 분야뿐만 아니라, 건축 및 토목분야에서도 고도의 제어어이론을 응용한 예를 쉽게 접할 수 있게 되었으며, 지진동에 의한 구조물의 진동을 억제하려는 방책이 그 ??ㅣ다. 이에 관한 많은 연구에서도 알 수 있듯이, 일반적으로 구조물의 수학적 모델에만 의존하여, 즉 구조물의 설계파라미터는 이미 설계되어져 있다는 가정하에 제어계를 설계하고 있다. 그러나 이러한 설계법에 있어서는 설계자로 하여금 구조물의 설계파라미터를 조정할 수 있는 자유도는 전혀 주어지지 않게 되며 단지 제어계의 파라미터를 조정하는 자유도만 허용된다. 이러한 문제점을 극복하기 위해 구조계 및 제어기의 설계파라미터를 동시에 조절할 수 있는 자유도가 허용되는 '구조계/제어계의 동시 최적화' 기법이 있다. 따라서 본 논문에서는 교량의 주탑 및 해양구조물 등의 진동제어 문제에 이러한 설계기법을 이용하여 주어진 설계사양을 만족하도록 구조계 및 제어계의 파라미터를 최적화 한다. 특히 본 논문에서는 제어계 설계 문제에 있어서의 일반적인 경우를 고려하여 상태의 일부가 관측된다고 가정하고 출력피드백의 경우에 대해 고찰하고 있다. 이때의 설계사양은 선형행렬부등식(LMI)으로 주어지며, 실험을 통하여 본 논문에서 소개하는 설계기법의 유효성을 검증한다.

  • PDF

(Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems) (파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계)

  • Jo, Sang-Hyeon;Kim, Gi-Tae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile H$\infty$ state feedback controllers for linear varying systems with affine parameter uncertainties, and static state feedback controller with structured uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ static state feedback controller, and the set of controllers which satisfies non-fragility are presented. The obtained condition can be rewritten as parameterized Linear Matrix Inequalities(PLMls), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMIs, PLMIs feasibility problems involve infinitely many LMIs hence are inherently difficult to solve numerically. Therefore PLMls are transformed into standard LMI problems using relaxation techniques relying on separated convexity concepts. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a degree.

Robust $H_$ Control of Continuous and Discrete Time Descriptor Systems with Parameter Uncertainties (파라미터 불확실성을 가지는 연속/이산 특이시스템의 견실 $Η_2$ 제어)

  • 이종하;김종해;박홍배
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.251-263
    • /
    • 2003
  • This paper presents matrix inequality conditions for Η$_2$control and Η$_2$controller design method of linear time-invariant descriptor systems with parameter uncertainties in continuous and discrete time cases, respectively. First, the necessary and sufficient condition for Η$_2$control and Η$_2$ controller design method are expressed in terms of LMI(linear matrix inequality) with no equality constraints in continuous time case. Next, the sufficient condition for Hi control and Η$_2$controller design method are proposed by matrix inequality approach in discrete time case. Based on these conditions, we develop the robust Η$_2$controller design method for parameter uncertain descriptor systems and give a numerical example in each case.

Design of Takagi-Sugeno Fuzzy Controllers for Nonlinear Systems using LMIs (선형행렬부등식을 이용한 비선형 시스템의 TS 퍼지 제어기 설계)

  • Kim, Jin-Sung;Choy, Ick;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2398-2400
    • /
    • 2000
  • In this paper, we consider multi-objective synthesis of fuzzy controllers for a widely used special class of the Takagi-Sugeno(TS) fuzzy systems. We propose a new fuzzy controller utilizing the strategy of rescaling and show that synthesis of the proposed controllers satisfying multiple design objectives can be reduced to a simple linear matrix inequality(LMI) problem. Finally, an application to an inverted pendulum on a cart is presented to illustrate the validity of the proposed method.

  • PDF