• Title/Summary/Keyword: 선형이진분류법

Search Result 5, Processing Time 0.023 seconds

Assessment of Linear Binary Classifiers and ROC Analysis for Flood Hazard Area Detection in North Korea (북한 홍수위험지역 탐지를 위한 선형이진분류법과 ROC분석의 적용성 평가)

  • Lee, Kyoung Sang;Lee, Dae Eop;Try, Sophal;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.370-370
    • /
    • 2017
  • 최근 기후변화와 이상기후의 영향으로 인하여 홍수재해의 시 공간적 패턴은 보다 복잡해지고, 예측이 어려워지고 있다. 이러한 기상이변에 따른 홍수피해를 예방하기 위한 비구조적 대책으로 홍수위험등급 및 범람범위 등의 정보를 포함하고 있는 홍수위험지도의 작성이 필요하다. 실제로 고정밀도 홍수위험지도를 작성하기 위해서는 지형, 지질, 기상 등의 디지털 정보 및 사회 경제와 관련된 다양한 DB를 필요로 하며, 강우-유출-범람해석 모델링을 통해 범람면적 및 침수깊이 등의 정보를 획득하게 된다. 하지만 일부지역, 특히 개발도상국에서는 이러한 계측 홍수 데이터가 부족하거나 획득할 수가 없어 홍수위험지도 제작이 불가능하거나 그 정확도가 매우 낮은 실정이다. 따라서 본 연구에서는 ASTER 또는 SRTM과 같은 범용 DEM 등 지형자료만을 기반으로 한 선형이진분류법(Liner binary classifiers)과 ROC분석(Receiver Operation Characteristics)을 이용하여 미계측 유역 (DB부재 또는 부족으로 강우-유출-범람해석 모델링이 불가능한 북한지역)의 홍수위험지역을 탐지하고, 적용성을 평가하고자 한다. 5개의 단일 지형학적 지수와 6개의 복합 지형학적 지수를 이용하여 Area Under the Curve (AUC)를 계산하고, Sensitivity (민감도)와 Specificity (특이도)가 가장 높은 지수를 선별하여 홍수위험지도를 작성하고, 실제 홍수범람 영상(2007년 북한 함경남도지역 용흥강 홍수)과 비교 분석하였다. 본 연구에서 제시하는 선형이진분류법과 ROC분석 방법은 홍수범람해석을 위한 다양한 기초정보를 필요로 하지 않고, 지형정보만을 사용하기 때문에 관측 데이터가 없거나 부족한 지역에 대해서 우선적으로 홍수위험지역을 탐지하고, 선별하는데 유용할 것으로 판단된다.

  • PDF

Classification of K-POP Dance Motion Using Multilinear PCA (다선형 PCA를 이용한 K-POP 댄스모션 분류)

  • Lee, Jae-Neung;Kwak, Keun-Chang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.486-487
    • /
    • 2018
  • 본 논문에서는 다선형 PCA(Principal Component Analysis)를 이용한 키넥트 센서 기반 댄스 모션분류방법을 제안한다. 댄스 모션 분류를 수행하기 위해서, 먼저 키넥트 데이터 깊이 영상과 이진영상을 보간법을 통해 데이터의 크기를 정렬시켜준다. 다음으로 다선형 주성분 분석 기법 (MPCA)을 이용하여 연속된 댄스모션영상들에 대한 특징을 추출하고, 유클리디안 분류기를 통해 클래스 분류한다. 본 실험에 사용된 데이터베이스는 키넥트 센서를 기반으로 전문 댄서 4명을 통해 취득된다. 총 100곡의 K-POP을 선정하였고, 곡마다 2개의 포인트 안무를 통해 총 200개의 포인트 댄스모션 데이터베이스를 구축하였다. 실험결과 제안된 방법은 89.5%의 성능을 나타낸다.

Binary classification by the combination of Adaboost and feature extraction methods (특징 추출 알고리즘과 Adaboost를 이용한 이진분류기)

  • Ham, Seaung-Lok;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.42-53
    • /
    • 2012
  • In pattern recognition and machine learning society, classification has been a classical problem and the most widely researched area. Adaptive boosting also known as Adaboost has been successfully applied to binary classification problems. It is a kind of boosting algorithm capable of constructing a strong classifier through a weighted combination of weak classifiers. On the other hand, the PCA and LDA algorithms are the most popular linear feature extraction methods used mainly for dimensionality reduction. In this paper, the combination of Adaboost and feature extraction methods is proposed for efficient classification of two class data. Conventionally, in classification problems, the roles of feature extraction and classification have been distinct, i.e., a feature extraction method and a classifier are applied sequentially to classify input variable into several categories. In this paper, these two steps are combined into one resulting in a good classification performance. More specifically, each projection vector is treated as a weak classifier in Adaboost algorithm to constitute a strong classifier for binary classification problems. The proposed algorithm is applied to UCI dataset and FRGC dataset and showed better recognition rates than sequential application of feature extraction and classification methods.

Analysis of large-scale flood inundation area using optimal topographic factors (지형학적 인자를 이용한 광역 홍수범람 위험지역 분석)

  • Lee, Kyoungsang;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.481-490
    • /
    • 2018
  • Recently, the spatiotemporal patterns of flood disasters have become more complex and unpredictable due to climate change. Flood hazard map including information on flood risk level has been widely used as an unstructured measure against flooding damages. In order to product a high-precision flood hazard map by combination of hydrologic and hydraulic modeling, huge digital information such as topography, geology, climate, landuse and various database related to social economic are required. However, in some areas, especially in developing countries, flood hazard mapping is difficult or impossible and its accuracy is insufficient because such data is lacking or inaccessible. Therefore, this study suggests a method to delineate large scale flood-prone area based on topographic factors produced by linear binary classifier and ROC (Receiver Operation Characteristics) using globally-available geographic data such as ASTER or SRTM. We applied the proposed methodology to five different countries: North Korea Bangladesh, Indonesia, Thailand and Myanmar. The results show that model performances on flood area detection ranges from 38% (Bangladesh) to 78% (Thailand). The flood-prone area detection based on the topographical factors has a great advantage in order to easily distinguish the large-scale inundation-potent area using only digital elevation model (DEM) for ungauged watersheds.

A Performance Comparison of SVM and MLP for Multiple Defect Diagnosis of Gas Turbine Engine (가스터빈 엔진의 복합 결함 진단을 위한 SVM과 MLP의 성능 비교)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.158-161
    • /
    • 2005
  • In this study, the defect diagnosis of the gas turbine engine was tried using Support Vector Machine(SVM). It is known that SVM can find the optimal solution mathematically through classifying two groups and searching for the Hyperplane of the arbitrary nonlinear boundary. The method for the decision of the gas turbine defect quantitatively was proposed using the Multi Layer SVM for classifying two groups and it was verified that SVM was shown quicker and more reliable diagnostic results than the existing Multi Layer Perceptron(MLP).

  • PDF