• Title/Summary/Keyword: 선형변위

Search Result 897, Processing Time 0.035 seconds

Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty Power Generation Engine - Part I (발전용 대형엔진용 천연가스 분사밸브 동특성 연구 (I))

  • Choi, Young;Kim, Yong-Rae;Lee, Seok-Whan;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.15-21
    • /
    • 2015
  • Natural gas fuel has known to be very promising in terms of abundancy and economic value. Therefore it is widely treated as research topics in a variety field of production, storage and utilization. Natural gas has become one of the major sources for the power generation by using internal combustion engines(ICE). Development of natural gas fuel injection device should be preceded to realize a reliable natural gas fuel supply system for a MW class power generation reciprocating ICE. In this research, an injection valve which consists of solenoid and body part with a moving plate was designed and its dynamic performance was experimented in the engine-like environment. As a result of the experiments, linearity of flow rate was obtained and overall around 2ms of response time was observed at the pressure difference of 1bar. In addition, more than 100Liter/min(@2Hz) of gas flow rate was witnessed, which is expected to be adequate for the fuel supply system of a MW class natural gas engine.

Design of pHEMT channel structure for single-pole-double-throw MMIC switches (SPDT 단일고주파집적회로 스위치용 pHEMT 채널구조 설계)

  • Mun Jae Kyoung;Lim Jong Won;Jang Woo Jin;Ji, Hong Gu;Ahn Ho Kyun;Kim Hae Cheon;Park Chong Ook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • This paper presents a channel structure for promising high performance pseudomorphic high electron mobility transistor(pHEMT) switching device for design and fabricating of microwave control circuits, such as switches, phase shifters, attenuators, limiters, for application in personal mobile communication systems. Using the designed epitaxial channel layer structure and ETRI's $0.5\mu$m pHEMT switch process, single pole double throw (SPDT) Tx/Rx monolithic microwave integrated circuit (MMIC) switch was fabricated for 2.4 GHz and 5 GHz band wireless local area network (WLAN) systems. The SPDT switch exhibits a low insertion loss of 0.849 dB, high isolation of 32.638 dB, return loss of 11.006 dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V These performances are enough for an application to 5 GHz band WLAN systems.

Estimating Stability Indices from the MODIS Infrared Measurements over the Korean Peninsula (MODIS 적외 자료를 이용한 한반도 지역의 대기 안정도 지수 산출)

  • Park, Sung-Hee;Chung, Eui-Seok;Koenig, Marianne;Sohn, B.J.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.469-483
    • /
    • 2006
  • An algorithm was developed to estimate stability indices (SI) over the Korean peninsula using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) infrared brightness temperatures (TBs). The SI is defined as the stability of the atmosphere in the hydrostatic equilibrium with respect to the vertical displacements and is used as an index for the potential severe storm development. Using atmosphere temperature and moisture profiles from Regional Data Assimilation and Prediction System (RDAPS) as initial guess data for a nonlinear physical relaxation method, K index (KI), KO Index (KO), lifted index (LI), and maximum buoyancy (MB) were estimated. A fast radiative transfer model, RTTOV-7, is utilized for reducing the computational burden related to the physical relaxation method. The estimated TBs from the radiative transfer simulation are in good agreement with observed MODIS TBs. To test usefulness for the short-term forecast of severe storms, the algorithm is applied to the rapidly developed convective storms. Compared with the SIs from the RDAPS forecasts and NASA products, the MODIS SI obtained in this research predicts the instability better over the pre-convection areas. Thus, it is expected that the nowcasting and short-term forecast can be improved by utilizing the algorithms developed in this study.

A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation (활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰)

  • Gwon, Ohsang;Son, Hyorok;Bae, Sangyeol;Park, Kiwoong;Choi, Ho-Seok;Kim, Young-Seog;Lee, Seoung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1901-1922
    • /
    • 2021
  • Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used for lineament analysis performed prior to field surveys in active fault surveys. The aim of this paper is introducing simple principles and application examples of each remote sensing technique (satellite remote sensing, airborne remote sensing, InSAR, LiDAR) widely used for active fault investigation. This paper also explains the analytical methods for the slope break generated by fault activity based on GIS and the horizontal displacement of the strike-slip fault. In discussion, we would like to discuss the problems and solutions on making DEM based on aerial photography, and a new developed technique (RRIM) to overcome the problems of DEM based on aerial LiDAR. Understanding remote sensing techniques used for active fault investigation and utilizing appropriate methods depending on the situation and limitations of each remote sensing technique are important for effective active fault investigation.

Construction of Logic Trees and Hazard Curves for Probabilistic Tsunami Hazard Analysis (확률론적 지진해일 재해도평가를 위한 로직트리 작성 및 재해곡선 산출 방법)

  • Jho, Myeong Hwan;Kim, Gun Hyeong;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.62-72
    • /
    • 2019
  • Due to the difficulties in forecasting the intensity and the source location of tsunami the countermeasures prepared based on the deterministic approach fail to work properly. Thus, there is an increasing demand of the tsunami hazard analyses that consider the uncertainties of tsunami behavior in probabilistic approach. In this paper a fundamental study is conducted to perform the probabilistic tsunami hazard analysis (PTHA) for the tsunamis that caused the disaster to the east coast of Korea. A logic tree approach is employed to consider the uncertainties of the initial free surface displacement and the tsunami height distribution along the coast. The branches of the logic tree are constructed by reflecting characteristics of tsunamis that have attacked the east coast of Korea. The computational time is nonlinearly increasing if the number of branches increases in the process of extracting the fractile curves. Thus, an improved method valid even for the case of a huge number of branches is proposed to save the computational time. The performance of the discrete weight distribution method proposed first in this study is compared with those of the conventional sorting method and the Monte Carlo method. The present method is comparable to the conventional methods in its accuracy, and is efficient in the sense of computational time when compared with the conventional sorting method. The Monte Carlo method, however, is more efficient than the other two methods if the number of branches and the number of fault segments increase significantly.

Unsupervised Non-rigid Registration Network for 3D Brain MR images (3차원 뇌 자기공명 영상의 비지도 학습 기반 비강체 정합 네트워크)

  • Oh, Donggeon;Kim, Bohyoung;Lee, Jeongjin;Shin, Yeong-Gil
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.64-74
    • /
    • 2019
  • Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.

The 33-mode Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal under Stress and Electric Field (압축하중 및 전계 인가에 따른 PIN-PMN-PT 단결정의 33-모드 유전 및 압전특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.91-96
    • /
    • 2020
  • The 33-mode dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single crystals were measured under large electric field and compressive stress. The phase transition from the low temperature rhombohedral to the high temperature tetragonal structure was observed in the range of 110~140℃, and the Curie temperature changing to the cubic structure was about 165℃. The polarization change according to the compressive stress and electric field was measured. Relative dielectric constant was calculated from the slope of the polarization curve applied to the electric field, and the calculated relative dielectric constant increased as the applied stress increased, and the relative dielectric constant decreased as the applied electric field increased. The strain according to the compressive stress and electric field change was measured, the piezoelectric constant was calculated from the slope of the curve, and the phase transition according to the application of pressure was confirmed. In the case of practical application as an underwater or medical ultrasonic actuator, it is necessary to properly design the magnitude of the compressive stress applied to the device and the DC bias in order to maintain linear driving.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

Flexural Reinforcement of Timber Beams Using Carbon Fiber Plates (탄소섬유판을 사용한 목재 보의 휨보강)

  • Choi, Jin-Chul;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.238-246
    • /
    • 2022
  • This paper summarizes the development and evaluation of the reinforcement details of CFRP plates to improve the bending performance of wooden beams. In this study, the reinforcing technology using high-strength bolts for the end of beam were developed as reinforcement details for reinforcing wooden beams with CFRP plates by EBM method. In order to evaluate the bending performance, a bending test was conducted for the specimens with details of reinforcement such as the EBM method and the NSM method. From the experimental results, the EBM specimens without end restraints had both the CFRP plate attachment failure and the splitting failure of the wood. In the load-displacement curve, the non-reinforced specimens exhibited linear elastic behavior and then brittle fracture after the maximum load. The maximum load of the specimens reinforced by the EBM method increased by 31.5~63.0% compared to the non-reinforced specimens, and the maximum load according to the end restraints of the high-strength bolts increased by 24.0%. Based on the reinforcement amount of the same CFRP plate, EBM reinforcement was 2.67 times larger in maximum load increase rate than NSM reinforcement.

Geotechnical Hybrid Simulation System for the Quantitative Prediction of the Residual Deformation in the Liquefiable Sand During and After Earthquake Motion (액상화 가능 지반의 진동 도중 및 후의 잔류 변형에 대한 정량적 예측을 위한 하이브리드 시뮬레이션 시스템)

  • Kwon, Young Cheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.43-52
    • /
    • 2006
  • Despite several constitutive models have been proposed and applied, it is still difficult to choose a suitable model and to estimate adequate analysis parameters. Furthermore, a cyclic shear behavior under the volume change caused by the seepage is more complex. None of the constitutive model is available at present in the expression of the cyclic behavior of soil under an additional volume change condition by seepage. Therefore, a new geotechnical hybrid simulation system which can control the pore water immigration was developed. The system enables a quantitative evaluation of the residual deformation such as lateral spreading and settlement caused by the liquefaction. The seismic responses in a one-dimensional slightly inclined multilayered soil system are taken into consideration, and the soils are governed by both equation of motion and the continuity equation. Furthermore, the estimation and the selection of the soil parameter for the representation of the strong nonlinearity of the material are not required, because soil behaviors under the earthquake motions are directly introduced instead of a numerical soil constitutive model. This paper presents the concept and specifications of the system. By applying the system to an example problem, the permeability effect on the seismic response during cyclic shear is studied. The importance of the volume change characteristics of sandy soil during and after cyclic shear is shown in conclusion.