낙동강과 밀양강의 합류지점에 위치한 김해시 딴섬 지역의 지표면하 $25{\sim}35\;m$ 구간에 형성되어 있는 고투수성 충적층 내 염소이온의 수리분산특성을 연구하기 위한 수렴흐름 추적자시험(convergent flow tracer test)이 수행되었다. 추적자로는 IW-1공과 IW-2공에서 각각 염소이온 5kg이 순간주입(instantaneous injection) 되었으며, PW공에서 일정한 양수율(2,500 m3 /day)로 채수하면서 염소이온농도를 관측하였다. 염소이온 주입 후 경과시간에 따른 염소이온농도 자료를 이용하여 농도이력곡선과 누적질량회수곡선이 산출되었으며, 관측된 염소이온농도의 정규분포를 검증하기 위한 일반통계분석이 수행되었다. 그리고, 농도이력의 증가/감소 구간에서의 함수를 추정하였으며, 두 시험에서 동일한 시간에 관측된 염소이온농도의 상관성이 분석되었다. 본 현장에서 수행된 추적자시험에 의한 종분산지수의 추정은 CATTI 코드(Sauty and Kinzelbach, 1992)에 의해 해석되었다. 추정된 종분산지수는 IW-1공과 PW공 구간에서는 0.4152 m, IW-2공과 PW공 구간에서는 0.4158 m 로서 매우 유사한 값으로 나타났다. 이는 추적자시험이 수행된 충적층에서의 용질이송이 방사상으로 비교적 균일함을 의미하는 것이다. 본 연구에서 수행된 추적자시험의 규모(2 m)를 Xu and Eckstein(1995)이 제시한 방정식에 대입하여 산정된 종분산지수는 0.0458 m 이었다. 이러한 결과는, 본 연구지역에서 수렴흐름 추적자시험에 의해 추정된 고투수성 충적층의 종분산지수가 일반적인 자연대수층에 비해 9.1배 정도 높다는 것을 의미한다. 이는 시험대수층의 투수성이 매우 높아 염소이온의 용질이송이 매우 빠르게 발생되었기 때문이다. 본 연구에서 추정된 종분산지수를 Gelhar et al.(1992)의 연구 결과와 비교 분석한 결과에서도 시험규모에 비해 매우 높은 수리분산이 발생된 것으로 나타났다. 그리고 염소이온의 확산면적을 추정하기 위해, 수렴흐름 추적자시험에 의한 종분산지수와 시험대수층의 평균선형유속을 이용하여 종분산계수를 구하였다. 현장에서 수행된 양수시험에 의한 평균선형유속 22.44 m/day와 평균 종분산지수 0.4155 m를 적용하여 산정된 종분산계수는 $9.32\;m^2/day$이었다. 따라서, 시험부지 내 충적층에서 일정한 양수율$(2,500\;m^3/day)$로 지하수를 개발할 시에 양수정 주변지역으로 유입되는 염소이온의 확산면적은 1일 $9.32\;m^2$ 정도일 것으로 나타났다.
대수심의 유체운동을 포텐셜 운동으로 가정하여 자유수면의 거동을 신속히 해석하는 BEM 해석법과 구조물 근방에서 유체의 자유 수면 변화를 계산하기 위하여 NS방정식의 해석으로 CADMAS-SURF 기법을 결합하여 하이브리드 수치기법을 개발하였다. 하이브리드 해석법에서는 반사파를 고려해야 할 넓은 영역에서, 대수심의 영역은 BEM이, 천수역은 CADMAS-SURF가 계산하게 된다. 특히, 하이브리드 모델은 장시간에 걸친 불규칙파의 운동에 대해서는 단독의 CADMAS-SURF을 이용한 계산에 비해 거의 동일한 정확도로 월등히 신속하게 계산할 수 있다. 본 연구에서는 완경사 해저면을 가진 넓은 해역에서, 호안구조물에 내습하는 파랑의 처오름과 월파와 같은 강비선형 파랑장 계산에 결합해석모델을 적용하였다. 계산결과는 각각 토요시마(풍도(豊島))의 규칙과 처오름 실험과 고다(합전(合田))가 제안한 불규칙파의 월파량 산정도와 비교하였다.
스커트의 유연성을 고려한 2차원 오일붐 모델에 대한 수치해법을 개발하였다. 본 수치모델에서는 부체를 강체로, 스커트를 장력이 걸려 있는 막으로, 스커트의 아래끝엔 집중질량이 놓여 있다고 가정하였다. 유동은 포텐셜이라고 가정하였으며 부체와 스커트의 연결부에서는 변위가 연속이라는 운동학적 조건을 그리고 스커트의 아래끝에는 집중질량에 대한 동력학적인 조건을 부가하였다. 수치해법은 선형포텐셜유동 이론에 근거한 Green 함수방법에 기초를 두고 있다. 스커트의 변형을 미리 알 수 없으므로 방사 포텐셜(radiation potential)과 부체의 변위 그러고 스커트의 변형을 동시에 구하는 방식을 택하였다. Green 정리를 적용하여 얻은 적분방정식과 부체의 운동방정식 그리고 스커트의 변형 관계식을 이산화하여 방사포텐셜과 부체의 변위 그리고 스커트의 변위에 대한 선형대수 방정식을 얻었다. 수치계산결과에 의하면 스커트의 유연성이 부체의 운동응답을 다소 줄일 수 있으며 부체의 공진체계를 바꿀 수 있음을 확인하였다. 그리고 오일붐의 운동응답특성에 영향을 주는 인자들 중에서 스커트의 길이와 집중질량을 파라미터로 하여 오일붐 모델의 운동응답특성을 비교해 보았다. 스커트가 유연한 경우와 스커트가 강체인 경우의 저주파수 극한해는 거의 일치하고 있어 수치해의 타당성을 간접적으로 확인할 수 있었다.
Tension Leg Platform (TLP)이란 평행위치로부터 일정 범위내에서 움직임으로 인하여 외 력의 효과를 완화시키는 compliant 구조물인 동시에, 기인장력을 받고 있는 연직 anchor cable 이 있으므로 부력이 자중을 초과하게 되는 안정한 platform 이다. 일반적으로 부체는 해상조건이 험할수록, 그리고 수심이 깊어질수록 동요가 심해지는데 TLP는 기인장 cable로 인하여 심해에서도 비교적 동요가 작아서 최근 대수심구조물의 총아로 각광받고 있다. 일찌기 Paulling 등이 TLP 거동의 예측을 위하여 수정된 Morison 방정식을 사용하는 선형동유체력합성방법을 발표하였다. 그러나 만일 TLP의 각 부재가 Morison 방정식의 가정이 성립할 수 없을 정도로 크다면 새로운 해석이 필요하다 하겠다. 일본의 Tanaka는 이런 경우에 McCamy-Fuchs 이론의 결과치를 이용하였으나, 완전한 해석이라기 보다는 일종의 간편법이라 하겠다. 본고에서는 큰 배수용적을 가진 연직부체가 있고, 이론적 해석의 결과를 검토해 볼 수 있는 수리모형 실험 결과가 있는 Deep Oil Technology (DOT) 회사의 TLP를 대상으로 하였다. 이 TLP는 부력을 전담하고 있는 연직축대칭 원통과 이들을 연결하고 있는 세부재로 이루어져 있어 축대칭부분에는 축대칭 Green 함수를 사용하여 동유체력을 구하고 세부재는 종래의 수정된 Morison 방정식의 항력항을 선형화하여 동유체력을 구하였다. 그리하여 부재의 각 미소부분에서 구한 힘들을 TLP의 중심에 원점을 둔 좌표계로 옮겨 동적응답을 구한 것이다. 본 해석에서 부재 상호간의 작용은 무시하였으며 단지 부재간의 거리효과만 고려하였다. 따라서 사용된 좌표계는 전체 (Global) 좌표계, 지점 (Local) 좌표계 및 파랑 (Wave) 좌표계 등이었고 각 좌표계간의 변환식이 필요하였다. 전체적인 해석정도는 선형이론으므로 케이블의 강성도 역시 선형적으로 구하였으며, 앞서 언급했다시피 Morison 방정식의 비선형항인 항력항은 Fourier 해석으로 선형화 하였다. 이러한 Fourier 해석은 잘 알려져 있는 Lorentz 원리와 같다고 볼 수 있다. 세부재의 경우 접선력은 무시하였고 수입자의 운동에 의한 부채에 대한 수직력만 고려하였다. 여기서 파랑좌표계에서 지점좌표계로의 좌표변환이 주의를 요하고 있다. 이제 이렇게 구한 각 힘들을 전체좌표 계에서 6개의 자유도별로 운동방정식에 대입하면 각 자유도별 동적응답이 구하여지는 것이다. DOT TLP의 Surge mode에 대한 동적응답을 실험치와 비교하여 본 결과, 세부재에 대한 고려를 뺄 수 없음을 알 수 있었다. 이는 연직축대칭 부체의 크기가 그리 크지 않으므로 인한 것이며, TLP의 원형의 경우에는 보다 더 관성력이 지배적일 것으로 사료된다.
본 연구에서는 3차원 압축성 내부유동해석 코드를 개발하여 터어빈 정익이나 동익 내부의 차원 익렬 유동을 수치적으로 해석하고자 한다. 여기에서 사용된 코드 는 Obyashi의 LU-ADI기법을 이용한 기존의 2차원 익렬 유동해석 코드를 3차원 유동장 으로 학장한 것이고, 난류유동해석에는, Baldwin-Lomax의 박층 대수모델을 3차원으로 확장한 알고리즘을 적용하였다.Kiock등이 실험한 선형 터어빈 익렬 내부의 천음속 유동장에 적용하여 양끝 벽면에 의한 3차원 유동장 특성을 분석하고, 3차원 익렬 유동 코드의 적합성을 검토하였다.
The vibrations of steering wheel are required to be reduced for convenient ride quality and good controllability. This phenomenon, vibration of steering wheel, is occured by interaction with suspension system, steering system, vehicle body, engine/transmission and tire complicately. But reviewing the current research activities, most researches are performed for the vibration analysis of steering wheel with a simple model, and mot easy to be applied to the variation of each component element connected with steering system as well as that of the steering system. In this study, suspension system and steering system are modelled by the T.L.H. coordinate system which is usually used by a passenger car maker. Also, rigid body motions of engine and elastic motions of vehicle body in the previous study are considered. Derive the equation of motion in 29 d.o.f. and the vibration of steering wheel is analyzed numerically and verify the midelling of steering system by comparison with test results for real car. And then, the optimal design values of the engine mount system obtained from the previous study are applied to the verified steering system model and investigate the effects of various engine mount design values on the vibration of steering wheel.
본 논문에서는 유연체 동역학해석을 위하여 유한회전을 표현하는데 있어, 4원법의 대수학적인 표현을 도입하여 운동방정식이 에너지보존 조건을 만족하도록 이산화된 에너지 평형식으로 정식화되었다. 여기서 사용된 유한회전의 4원법은 로드리게스 매개변수를 이용하도록 하였으며, 구속력에 대한 일이 제거되도록 하였다. 수치해석의 예를 통하여 제안된 방법이 사다리꼴 방법과 비교할 때 비선형 문제에서도 무조건적으로 안정조건을 보장함을 검증하였으며, 향후 유연한 관절로 연결된 3차원 유연다물체에 대한 동역학 해석을 확장할 수 있는 토대를 마련하였다.
수치해법와 경험적 방법을 합성함으로써 하천수문곡선의 기저유출을 분리하는 방법을 개발하였다. 기저유출 감수곡선에 대해서는 선형화된 Boussinesq 방정식과 저유함수를 적용하였으며, 또한 강우에 의하여 지하의 대수층에 침투된 량이 하천으로 유입되는 기저유출의 추정에는 Singh과 Stall의 도식적 방법을 이용하였다. 이들에대한 시간별 연속성은 다원적인 다항식 회귀론에 의하여 근사화시켰다. 본 연구과정은 자연하천에 성공적으로 적용할 수 있었으나, 감수곡선을 위한 동차선형2단상징분계의 직접적 수치해법은 부적합한 것으로 나타났으며, 손실이 발생되는 부분침투천의 기저유량은 본 연구방법에 의하여 추정할 수 없었다.
본 연구에서는 구속조건을 가진 기계계의 동적 평형위치를 다물체 동역학 해석방법을 이용하여 계산하였다. 다물체계에서 얻어지는 시간 구속조건을 가진 구속조건식과 동역학식으로부터 독립좌표계로 이루어진 동적평형식을 유도하였다. 동적 평형식은 구속조건식과 함께 비선형 대수방정식의 형태로서 Newton-Raphson 방법을 이용하여 수치해를 구하였다. 제안된 동적 평형 계산 방법을 조속기에 적용하여 동적 평형위치를 구하였다. 해석결과는 상용 프로그램의 동역학해석을 통한 평형위치의 결과와 비교하여 타당성을 검증하였다. 조속기의 회전 각속도에 대한 평형위치를 계산하고 설계 파라미터에 대한 평형위치의 영향을 분석하였다.
수치방법은 포텐셜 유동의 가정하에서 Semi-Lagrangian 기법을 사용하여 2차원 쇄기의 비선형운동과 축대칭 물체의 강제 상하동요 운동에 대해서 개발되었다. 2차원에서 Cauchy 이론은 경계를 따라서 복소포텐셜과 그것의 미분치를 계산하기 위해 적용되었고, 3차원에서 Rankinering 쏘오스가 사용되고 대수방정식을 풀기위해서 그린 제2정리를 이용하였다. 해는 완전한 사유표면 조건을 수치적분함으로서 시간전진시킨다. 수치계산 예는 정속도로 입수하는 쇄기형 주상체와 정지 상태로 부터 강제상하동요하는 문제를 택하였다. 쇄기입수 문제는 Chapman [4], Kim[11]의 계산결과와 비교된다. 위에서 적용된 기법을 이용하여 구한 시간영역에서 힘을 Fourier 변환함으로서 부가질량계수, 감쇄계수, 2차조화력등이 얻어지고 Yamashita[5]의 실험치와 비교된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.