• Title/Summary/Keyword: 선형구조분석

Search Result 1,536, Processing Time 0.031 seconds

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.

Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition (비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석)

  • Lee, Sang-Ho;Kim, Sang Ug;Lee, Yeong Seob;Kim, Hyeong Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.610-610
    • /
    • 2015
  • 수공구조물의 설계에서는 홍수빈도분석을 통해 산정된 특정 재현기간에서의 확률수문량이 설계기준으로 사용된다. 그러나 최근 기후변화로 인해 이상기후 현상이 심해짐에 따라 수문기상자료의 정상성을 가정하는 기존의 홍수빈도분석은 변화되는 수문현상을 적절히 표현하지 못하는 경우가 많다. 본 연구에서는 확률분포의 모수가 시간에 따라 변화하는 비정상성 빈도분석기법을 적용하였으며 확률분포의 모수들을 최우추정법으로 추정하였다. 또한, 분위수 추정과정에서도 비정상성을 고려하여 정상성 가정에서 산정된 재현기간 및 위험도와 비교분석하였다. 확률분포는 GEV 분포를 사용하여 정상성 및 비정상성 모형 4개를 구축하였다. 특히, 비정상성 모형은 위치모수만 선형 경향성을 가지는 경우, 규모모수만 선형경향성을 가지는 경우, 위치 및 규모모수가 선형경향성을 가지는 경우의 3가지로 구분하여 적용하였다. 구축된 4개의 모형 중 적합모형을 선정하기 위해 우도비 검정과 Akaike 정보기준을 사용하였으며 적합모형선정 절차를 체계적으로 구축하고 적용하여 적합모형을 선정하였다. 본 연구에서 구축된 비정상성 홍수빈도분석 기법은 우리나라의 8개 다목적댐 (충주댐, 소양강댐, 안동댐, 임하댐, 합천댐, 대청댐, 섬진강댐, 주암댐)으로부터 취득된 과거 관측 댐 유입량을 대상으로 하여 적용되었다. 우도비 검정과 Akaike 정보기준을 이용한 적합 모형 선정 결과 합천댐과 섬진강댐이 비정상성 GEV 모형에 적합한 것으로 분석되었고, 나머지 지점의 다목적댐들은 정상성 모형에 적합한 것으로 분석되었다. 합천댐과 섬진강댐의 경우 비정상성 가정에서 산정된 재현기간이 정상성 가정에서 산정된 재현기간보다 매우 작게 산정되었으며 확률수문량과 위험도는 크게 산정되었다. 적합모형으로 정상성 모형이 선정된 6개의 다목적댐 중 소양강댐은 Mann-Kendall 비모수 경향성 검정 결과 유의하지는 않지만 비교적 큰 선형경향성을 가지고 있었다. 비록 비정상성 모형이 적합모형으로 선정되지는 않았지만 소양강댐에 비정상성 모형을 가정하여 재현기간과 확률수문량, 위험도를 분석한 결과 정상성 모형 가정에서 산정한 결과와 상당한 차이가 있었다. 이와 같은 결과는 수문자료의 정상성과 비정상성을 고려한 홍수빈도분석이 향후 수공구조물의 설계에 있어서 신뢰성 있는 확률수문량을 결정하는데 도움이 될 것으로 판단된다.

  • PDF

A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis (비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Seo, Seong-Ho;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

Ultimate Resisting Capacity of RC Columns Considering P-$\Delta$ Effect (P-$\Delta$ 효과를 고려한 RC 기둥의 극한저항력 산정)

  • 곽효경;김진국;김한수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.105-116
    • /
    • 2002
  • In this paper, an analytical model to predict the resisting capacity of slender RC columns is introduced. Material and geometric nonlinearities are taken into account, and the layer approach is adopted to simulate the different material properties across the sectional depth. On the basis of the obtained numerical analysis results, an improved design equation as a function of concrete strength, slenderness ratio, steel ratio and eccentricity for slender RC columns, which can be used effectively in the preliminary design stage, is introduced. Finally, P-M interaction diagrams constructed by the introduced equation are compared with the ACI method with the objective of establishing the relative efficiencies of the introduced equation.

A New Structural Model for Predicting Effective Thermal Conductivity of Variably Saturated Porous Materials (포화도에 따른 다공성 매질의 유효열전도도 변화 예측 모델)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.629-639
    • /
    • 2011
  • Based on Maxwell-Eucken(ME) model, which is one of structural models, a new model for predicting the effective thermal conductivity of variably saturated porous materials is proposed. The new model is a linear combination of three ME models having matrix, water, and air as a continuous phase. The coefficient of the corresponding linear equation is defined by a parameter referred to as 'the continuity coefficient', which provides a relative degree of continuity of each phase. The continuity coefficient of matrix is assumed to be linearly proportional to porosity. The model can be linear or nonlinear depending on how the continuity coefficients of water and air vary with water saturation. The feasibility of the proposed model was examined by both numerical and experimental results. Both linear and nonlinear models showed a high accuracy of prediction with $R^2$ values of 0.86-0.98 and 0.88-0.99, respectively. The numerical and experimental results also showed that the continuity coefficient of matrix was linearly proportional to porosity. Therefore, the proposed prediction model can be effectively used to estimate effective thermal conductivity of unsaturated porous materials by measuring porosity, water content and mineralogical compositions of matrix.

Seismic Performance Assessment of RC Bridges using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 철근콘크리트 교량의 내진성능평가)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.31-38
    • /
    • 2006
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridges using nonlinear finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The proposed numerical method is applied to reinforced concrete bridges and compared.

BDS Statistic: Applications to Hydrologic Data (BDS 통계: 수문자료에의 응용)

  • Kim, Hyeong-Su;Gang, Du-Seon;Kim, Jong-U;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.769-777
    • /
    • 1998
  • In this study, various time series are analyzed to check nonlinearities of the data. The nonlinearity of a system can be investigated by testing the randomness of the time series data. To test the randomness, four nonparametric test statistics and a new test statistic, called the BDS statistic are used and the results and the results are compared. The Brock, Dechert, and Scheinkman (BDS) statistic is originated from the statistical properties of the correlation integral which is used for searching for chaos and has been shown very effective in distinguishing nonlinear structures in dynamic systems from random structures. As a result of application to linear and nonlinear models which are well known, the BDS statistic is found to be more effective than nonparametric test statistics in identifying nonlinear structure in the time series. Hydrologic time series data are fitted to ARMA type models and the statistics are applied to the residuals. The results show that the BDS statistic can distinguish chaotic nonlinearity from randomness and that the BDS statistic can also be used for verifying the validity of the fitted model.

  • PDF

Structural Design of a Mover considering the Thermal Analysis of a Stator Module (스테이터 모듈의 열해석을 고려한 이동체의 구조설계)

  • Lee, Jeong-Myeong;Han, Dong-Seop;Lee, Seong-Uk;Han, Geun-Jo;Lee, Gwon-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-372
    • /
    • 2006
  • When we design a linear motor, the thermal behavior investigation is one of great important considerations with respect to uniform thrust force and thermal deformation of a linear motor. In this study, we conduct the research for the structural design of the linear motor for LMTT(Linear Motor-based Transfer Technology) which is the next generation of container horizontal transfer system in order to automate a container terminal. After the dimensions of main parts for a linear motor were set up, we carried out the thermal-structural analysis of the linear motor considering the thermal analysis of the stator module.

  • PDF

Energy Dissipation Demand of Braces Using Non-linear Dynamic Analyses of X-Braced Frame (비선형 동적 해석을 통한 X형 가새골조 내 가새 부재의 에너지 소산)

  • Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.379-388
    • /
    • 2003
  • The response of single story buildings and other case studies were investigated to observe trends and develop a better understanding of the impact of some design parameters on the seismic response of Concentrically Braced Frames (CBF). While many parameters are known to influence the behavior of braced frames, the focus of this study was mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, a bracing member designed with bigger R and larger KL/r was found to result in lower normalized cumulative energy ratio in both cases.

Moment-Curvature Relationship of Structural Wells with Confined Boundary Element (단부 횡보강된 구조벽의 모멘트-곡률 관계)

  • Kang, Su-Min;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.323-334
    • /
    • 2003
  • For performance-based design using nonlinear static analysis, it is required to predict the inelastic behavior of structural members accurately. In the present study, a nonlinear numerical analysis was peformed to develop the method describing the moment-curvature relationship of structural wall with boundary confinement. Through the numerical analysis, variations of behavioral characteristics and failure mechanism with the arrangement of vertical reinforcement and the length of boundary confinement were studied. According to the analysis, the maximum moment-carrying capacity of structural walls with adequately confined boundary elements is developed at the moment the unconfined concrete reaches the ultimate compressive strain. Walls with flexural re-bars concentrated on the boundaries fails in a brittle manner. As vortical re-bars in the web increases, the brittle failure is prevented and a ductile failure occurs. Based on the findings, moment-curvature curves for walls with a variety of re-bar arrangement were developed. According to the proposed relationships, deformability of the structural walls wth boundary confinement increases as the compressive strength of the confined concrete increases compared to the applied compressive force.