• 제목/요약/키워드: 선행시간별 예측

검색결과 297건 처리시간 0.033초

전국 도시·산지·소하천 돌발홍수예측 시스템 개발 및 정확도 평가 (Development of flood forecasting system on city·mountains·small river area in Korea and assessment of forecast accuracy)

  • 황석환;윤정수;강나래;이동률
    • 한국수자원학회논문집
    • /
    • 제53권3호
    • /
    • pp.225-236
    • /
    • 2020
  • 유역 상류의 소규모 산지 유역 또는 도시 배수분구 정도의 도시 유역은 지체시간이 수 십 여분에 불과하기 때문에 우량계만으로는 대응에 필요한 충분한 예측 선행시간을 확보하기 어렵다. 도시 및 소규모 산지 유역에서와 같이 지체시간이 짧은 유역에서 발생하는 돌발홍수는 더 이상 우량계만으로 예보가 불가능하다. 도달시간이 짧은 도시 및 산지에서는 지체시간 외에 강수 예측을 통한 홍수예보 선행시간을 확보하는 것이 매우 중요하다. 한강홍수통제소에서는 강우레이더 강우강도를 초단기 예측 모델인 Mcgill Algorithm for Precipitation-nowcast by Lagrangian Extrapolation(MAPLE) 알고리즘의 입력 자료로 활용하여 초단기 예측 강수 자료를 생산하고 있다. 한국건설기술연구원의 돌발홍수연구센터는 한강홍수통제소에서 생산하고 있는 초단기 예측 강수 자료를 입력 자료로 하여 돌발홍수 예측 시스템을 구축하였고 2019년부터 동네규모의 1시간 전 돌발홍수정보를 제공하고 있다. 본 연구에서는 돌발홍수연구센터에서 구축한 돌발홍수 예측 시스템을 설명하고 2019년도에 발생한 수재해 사례를 분석하여 전국 도시·산지·소하천 돌발홍수 예측 시스템의 예측 정확도를 검증하였다. 돌발홍수 예측 시스템의 정확도 검증에는 총 31개의 수재해 사례를 적용하였고 예측 정확도는 Probability of Detection (POD) 기준으로 90.3%로 매우 높게 나타났다.

DNN 및 LSTM 기반 딥러닝 모형을 활용한 태화강 유역의 수위 예측 (Water level prediction in Taehwa River basin using deep learning model based on DNN and LSTM)

  • 이명진;김종성;유영훈;김형수;김삼은;김수전
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1061-1069
    • /
    • 2021
  • 최근 이상 기후로 인해 극한 호우 및 국지성 호우의 규모 및 빈도가 증가하여 하천 주변의 홍수 피해가 증가하고 있다. 이에 따라 하천 또는 유역 내 수문학적 시스템의 비선형성이 증가하고 있으며, 기존의 물리적 기반의 수문 모형을 활용하여 홍수위를 예측하기에는 선행시간이 부족한 한계점이 존재한다. 본 연구에서는 Deep Neural Network (DNN) 및 Long Short-Term Memory (LSTM)기반의 딥러닝 기법을 적용하여 울산시(태화교) 지점의 수위를 0, 1, 2, 3, 6, 12시간에 대해 선행 예측을 수행하였고 예측 정확도를 비교 분석하였다. 그 결과 sliding window 개념을 적용한 DNN 모형이 선행시간 12시간까지 상관계수 0.97, RMSE 0.82 m로 가장 높은 정확도를 보이고 있음을 확인하였다. 향후 DNN 모형을 활용하여 딥러닝 기반의 수위 예측을 수행한다면 기존의 물리적 모형을 통한 홍수위 예측보다 향상된 예측 정확도와 충분한 선행시간을 확보할 수 있을 것으로 판단된다.

원격상관 기후지수를 이용한 금강유역 장기 강우량 예측 (Long-term rainfall prediction of Geum river basin using teleconnected climate indices)

  • 이정우;김남원;김철겸;이정은
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.211-211
    • /
    • 2018
  • 미해양대기청 기후예측센터(Climate Prediction Center, NOAA)에서 제공하고 있는 기후지수(climate indices)를 예측인자로 하고 금강유역의 5~6월의 강우량을 예측대상으로 하는 원격상관기반 통계모형을 구축하였다. 1988년부터 2017년까지의 30년 자료에 대해 예측인자와 예측대상간의 시간지연상관분석을 수행한 결과 NAO(North Atlantic Oscillation), EP/NP(East Pacific/North Pacific Oscillation), EA(East Atlantic Pattern), WP(Western Pacific Index) 등과 상관성이 높은 것으로 분석되었으며, 이러한 시간지연 기후지수를 이용하여 4개월전에 5,6월 강수량을 예측할 수 있는 다중회귀모형을 개발하였다. 관측 강우량 아노말리가 큰 경우에는 다소 과소 예측되고, 아노말리가 작은 경우에는 다소 과다 예측되는 경향을 보였지만 관측 강우량과 예측 강우량간의 상관계수가 0.75로서 비교적 우수한 예측 결과를 나타내었다. 5~6월 강우량 아노말리의 3분위 예측성을 평가한 결과 평년이상 적중률은 77.8%, 평년수준은 81.8%로서 예측 성공률이 높았으며, 5, 6월 누적강우량이 매우 작았던 92년과 95년을 제외하고는 강우량이 적은 해에도 예측성이 우수하여 평년이하 적중률이 70.0%를 나타내었다. 따라서 본 개발모형은 최소 4개월 이전 선행시간을 가지고 늦봄, 초여름강우량을 예측할 수 있는 저비용의 가뭄 예측 도구로 유용하게 활용될 수 있을 것이다.

  • PDF

선행스케줄링에서 배타적 자원접근 (Mutually Exclusive Resource Access in Pre-Scheduling)

  • 박학봉;한상철;김희헌;박민규;조성제;조유근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.162-166
    • /
    • 2006
  • 선행스케줄링(pre-scheduling)은 정적인 작업(periodic job)과 동적인 작업(sporadic job)을 유연하게 처리하기 위해 제안된 스케줄링 방식이다. 이 방식은 오프라인 컴포넌트와 온라인 컴포넌트로 구성되며 오프라인 컴포넌트에서는 비주기적으로 도착하는 동적인 작업들을 고려하여 정적인 작업들을 여러 부분작업으로 분할하고, 그리고 각 부분작업들의 실행시간, 준비시간, 마감시간을 부여하고 실행순서를 결정한다. 온라인 컴포넌트에서는 이 정보들을 이용하여 정적인 작업들을 정해진 실행순서에 따라 스케줄하고, 동적인 작업이 도착하면 EDF(Earliest Deadline First) 스케줄링 방식으로 처리한다. 그러나 선행스케줄링에서는 자원공유문제를 고려하지 않고 실행시간을 부여하였으므로 여러 정적인 작업들이 하나의 자원을 공유할 경우에 배타적인 자원접근을 보장하지 못한다. 본 논문에서는 단일처리기 환경에서 여러 정적인 작업들의 자원공유를 고려하여 자원의 배타적 사용을 보장하는 선행스케줄 생성기법을 제시한다. 이 기법은 각 작업의 자원 방출시간을 예측하고 예측시간에 근거하여 각 작업의 자원사용구간이 중복되지 않도록 실행시간을 결정한다.

  • PDF

광역 위성 영상과 수치예보자료를 이용한 여름철 강수량 예측 (Summer Precipitation Forecast Using Satellite Data and Numerical Weather Forecast Model Data)

  • 김광섭;조소현
    • 한국수자원학회논문집
    • /
    • 제45권7호
    • /
    • pp.631-641
    • /
    • 2012
  • 본 연구에서는 지상의 관측 자료와 광역의 정보를 제공하는 수치 예보 모형 자료 및 인공위성 자료를 이용하고 자료와 강수예측치의 물리적 상관 특성을 나타내기 위하여 자료 사이의 비선형 거동을 잘 나타내는 신경망 모형에 적용시켜 단시간 강수 예측을 수행하였다. 이를 위하여 서울지점에 대하여 현재로부터 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 인공위성자료(MTSAT-1R) 및 수치 예보 모형 자료(RDAPS, Regional Data Assimilation and Prediction System)와 실시간 전송되는 자동 기상 관측 시스템(AWS, Automatic Weather System)의 관측치를 신경망 모형의 입력 자료로 하여 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 자료로 강수를 예측 할 수 있는 강수 예측 모형을 개발하였다. 장마와 태풍과 같이 전선형강수와 선풍형강수 등 강수 양상의 차이를 고려하기 위하여 6월, 7월과 8월, 9월 자료를 구분하여 신경망을 구축하였으며, 자료가용성에 기초하여 2006년에서 2008년 기간 동안에 대하여 모형을 학습하고 2009년에 대하여 모형의 적용성을 검증한 결과, 단시간 강수예측에 대한 모형의 적용 가능성을 보여주었으나 다양한 광역 자료와 인공신경망을 사용함에도 불구하고 단시간 강수예측의 정량적 정도향상을 위한 여지가 많음을 보여준다.

TREC기법을 이용한 초단기 레이더 강우예측의 도시유출 모의 적용 (Application of Very Short-Term Rainfall Forecasting to Urban Water Simulation using TREC Method)

  • 김종필;윤선권;김광섭;문영일
    • 한국수자원학회논문집
    • /
    • 제48권5호
    • /
    • pp.409-423
    • /
    • 2015
  • 본 연구에서는 기상레이더 자료를 이용하여 도시하천 유역을 대상으로 초단기 강우예측 및 홍수예측을 실시하였다. 초단기 강우예측 결과 선행시간이 증가함에 따라 관측 자료와의 상관계수가 감소하며, 평균제곱근오차는 증가하여 정확도가 감소하였으나, 선행시간 60분까지 상관계수가 0.5이상 유지되는 결과를 얻을 수 있었다. 또한 강우예측 자료 적용에 의한 도시유출 분석결과, 선행시간 증가에 따른 첨두유량과 유출체적의 감소가 발생하였으나, 첨두시간은 비교적 일치하는 것으로 분석되었다. 레이더 예측 강우 적용을 통한 도시유출 분석결과, 관측 자료와의 오차가 발생하나 이는 여러 가지 외부적인 요인으로 판단되며, 추후 강수 에코의 급격한 생성과 소멸현상 모의, 국지성 강우 예측 성능 향상 등 지속적인 알고리즘 개선과 강우-유출 모형 매개변수 검 보정이 필요할 것으로 사료된다. 본 연구의 결과는 도시하천 유역뿐만 아니라 관측이 어려운 미계측 지역의 수문자료 확보 및 실시간 홍수 예 경보시스템 구축에 확장이 가능하며, 다양한 관측자료 기반 Multi-Sensor 초단기 강우예측 기반기술로의 활용이 가능하다.

수문학적 예측을 위한 지역규모 기상모델의 활용 (The Regional-Scale Weather Model Applications for Hydrological Prediction)

  • 정용;백종진;최민하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.936-940
    • /
    • 2012
  • 충분한 선행시간을 확보한 강우의 정확한 예측은 홍수피해를 저감하기 위한 필요한 조건이다. 이를 위해 지역규모의 기상모델인 Advanced Research WRF (ARW)를 적용하여 지역에 맞는 강우 예측에 가장 밀접한 관계를 갖는 물리학적 요소들의 최적화된 조건을 찾아보려 한다. 이를 위해 2006년의 7월의 강우에 대한 분석을 실시하고 생극과 분천의 강우 관측치 와의 비교를 통해 (Root Mean Square Error와 Index of Agreement 활용), ARW의 수문학적 예측을 위한 적용 가능성을 보려 한다.

  • PDF

실시간 도시침수 예측 시스템 개발 (Development of real-time urban inundation prediction system)

  • 이승수;박경원;이기하;안현욱;정성호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.62-62
    • /
    • 2019
  • 본 연구에서는 기상청에서 제공하는 인공위성 관측자료와 레이더 자료를 합성하여 예측된 선행시간 2시간의 강수량 예측자료를 이용하여 도시유역의 침수 발생 여부를 확인할 수 있는 시스템을 개발하였다. 대상유역은 부산광역시에 위치하고 있는 유역면적 $54km^2$의 온천천유역으로, $10m{\times}10m$의 해상도로 지표면의 침수예측을 수행한다. 침수예측에 이용되는 모델은 지표면과 하수관망 사이의 상호작용을 효과적으로 고려할 수 있도록 지표면 2차원, 하수관망 1차원 모델을 연계하였으며, 침수예측에 소요되는 시간을 최소화하기 위하여 OpenMP기반의 병렬해석 기법을 적용하였다. 또한 초기조건에 의한 오차를 줄이기 위하여 하천수위 관측소에 관측된 수위자료를 예측모델의 초기조건으로 입력할 수 있도록 시스템을 구성하였으며 유역 하류단에서 경계조건으로 활용되는 예측수위자료는 시계열자료의 예측에 뛰어난 성능을 보여주는 것으로 알려진 LongShort-term Memory(LSTM) 기법을 적용하여 이용하였다. 본 연구에서 개발된 실시간 도시침수 예측 시스템은 집중호우 발생시 침수 발생 위치를 사전에 빠르게 예측하여 도시유역의 인적 물적 자원의 피해를 저감하는데 적극적으로 활용될 수 있을 것으로 기대된다.

  • PDF

인공지능 기술 기반 홍수 유발 기후패턴 분석 (Analysis of Flood-induced Climate Patterns based on Artificial Intelligence Technology)

  • 정재원;김수영;김형준;윤광석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.318-318
    • /
    • 2022
  • 이상 기후로 인한 집중호우, 폭우로 홍수 피해의 규모가 커지고 있다. 이러한 기후변동에 따른 불확실성 증가로 홍수 발생의 예측 및 대비가 어려운 실정이다. 이를 위해 홍수를 유발하는 전조 기후 패턴을 찾아낼 수 있다면 중장기 홍수 선행예측을 통한 대비가 가능하다. 본 연구에서는 인공지능 기법을 활용하여 홍수 발생 시의 기후패턴을 학습시키고 홍수 유발 기후패턴을 판별하는 알고리즘을 개발하고자 하였다. 이를 바탕으로 국내 홍수 발생에 영향을 미치는 기후패턴을 사전에 감지하여 중장기 홍수 예측의 기초자료를 제시하였다. 본 연구에서 제시된 기법을 분석한 결과, 홍수 예측 선행시간을 확보하는데 활용이 가능함을 확인하였으며 향후 국제협력사업 등을 통해 저개발 국가의 홍수 재난 대응에 기여할 수 있을 것으로 기대된다.

  • PDF

실시간 물관리를 위한 정량적 강수예측기법에 관한 연구 (Estimation of Quantitative Daily Precipitation Forecasting for Integrated Real-time Basin Water Management System)

  • 오재호;김진영;강부식;정창삼;고익환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1488-1491
    • /
    • 2006
  • 본 연구에서는 실시간 통합 물관리 시스템의 일환으로 월별 일강수량 예측 시스템에 관한 연구를 실시하였다. 선행시간 2일 예측에 대해서는 기상청 생성 수치모의 RDAPS (Regional Data Assimilation and Prediction System)를 기반으로 강수진단모형인 QPM (Quantitative Precipitatiom Model)을 이용하여 지형효과를 보정하였으며, 선행시간 2일에서 8일까지의 예측에 대해서는 GDAPS (Global Data Assimilation and Prediction System) 모의결과를 QPM을 이용하여 보정하였고, 선행시간 10일 이후의 예측값은 통계적 기법을 이용한 자료를 활용하였다. 통계적 기법으로는 과거 20년간의 관측된 강수경향을 이용하여 시스템을 구축하였다. 강수진단모형 (QPM)은 Misumi et al. (2001), Bell (1978), Collier (1975)등이 제안한 바 있는 Collier-type의 모형으로서 이들 모형은 소규모 지형 효과를 고려한 강수량을 산출하는 진단 모형이다. QPM은 중규모 예측 모형으로부터 계산된 수평 바람, 고도, 기온, 강우 강도, 그리고 상대습도 등의 예측 자료를 이용하고, 중규모 예측 모형에서는 잘 표현되지 않는 소규모 지형 효과를 고려함으로써 중규모 예측 모형에서 생산된 상대적으로 성긴 격자의 강수량 예측 값을 상세 지역의 지형을 고려한 강수량 예측 값으로 재구성하게 된다. QPM은 중규모 모형으로부터 나온 자료를 초기 자료로 이용하고 3 km 간격의 상세 지형을 반영하는 모형으로 소규모 지형 효과를 표현함으로써 상세 지역에서의 강수량 산출과 지형에 따른 강수량의 분포 파악이 용이할 뿐 아니라, 계산 효율성을 개선시킬 수 있다.착능이 높은 것으로 사료되었다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주

  • PDF