• Title/Summary/Keyword: 선택적 추론

Search Result 253, Processing Time 0.018 seconds

Separation Permeation Characteristics of N2-O2 Gas in Air at Cell Membrane Model of Skin which Irradiated by High Energy Electron (고에너지 전자선을 조사한 피부의 세포막모델에서 공기 중의 O2-N2 혼합기체의 분리투과 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.261-270
    • /
    • 2019
  • The separation permeation characteristics of $N_2-O_2$ gas in air at cell membrane model of skin which irradiated by high energy electron(linac 6 MeV) were investigated. The cell membrane model of skin used in this experiment was a sulfonated polydimethyl siloxane(PDMS) non-porous membrane. The pressure range of $N_2$ and $O_2$ gas were appeared from $1kg_f/cm^2$ to $6kg_f/cm^2$. In this experiment(temperature $36.5^{\circ}C$), the permeation change of $N_2$ and $O_2$ gas in non-porous membrane by non-irradiation were found to be $1.19{\times}10^{-4}-2.43{\times}10^{-4}$, $1.72{\times}10^{-4}-2.6{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. That of $N_2$ and $O_2$ gas in non-porous membrane by irradiation were found to be $0.19{\times}10^{-4}-0.56{\times}10^{-4}$, $0.41{\times}10^{-4}-0.76{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. The irradiated membrane was significantly decreased about 4-10 times than membrane which was not irradiated. And ideal separation factor of $N_2$ and $O_2$ gas by non-irradiation was found to be from 1.32 to 0.42 and that of $N_2$ and $O_2$ gas by irradiation was found to be from 0.237 to 0.125. The irradiated membrane was significantly decreased about 4-5 times than membrane which was not irradiated. When the operation change(cut) and pressure ratio(Pr) by non-irradiation were about 0, One was increased to the oxygen enrichment and the other was decreased to the oxygen enrichment. The irradiated membrane was significantly decreased about 4-19 times than membrane which was not irradiated. As the pressure of $N_2$ and $O_2$ gas was increased, the selectivity was decreased. As separation permeation characteristics of $N_2-O_2$ gas in cell membrane model of skin were abnormal, cell damages were appeared at cell.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

A Study on the Sasang Constitutional Distribution Among the People in the United States of America (북미지역주민(北美地域住民)의 사상체질(四象體質) 분포(分布)에 관(關)한 연구(硏究))

  • Koh, Byung-hee;Kim, Seon-ho;Park, Byung-gwan;Lavelle, Jonathan D;Tecun, Marianne;Anthony Jr., Ross;Hobbs, Ron;Zolli, Frank;Chin, Kyung-hee
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.119-150
    • /
    • 1999
  • In spite of recent remarkable recent development in both western and oriental medical sciences, there is still only a shallow understanding of individual differences for various prognoses of incurable diseases and immunopathy diseases. Nevertheless, the care, cure and prevention methods of Sasang Constitutional Medicine are broadly used as an effective treatment of incurable diseases like immunopathy diseases and stress-related diseases and diseases due to aging. In this sense, the establishment of classification norms is urgent and essential for the worldwide application of Sasang Constitutional Medicine(SCM). This study began with the confirmation process of whether Sasang Constitutional types exist in Americans. To accomodate for cultural differences, the distinguishing tool was readjusted so that Sasang Constitutional Types in Americans could be determined. Hence, the selected tool is the new QSCCII+, which is a newly revised English version of the QSCCII. QSCCII was made and standardized by Dept. of SCM in Kyung Hee Medical Center and Dr. Kim7). The evaluation methods of the old version were improved in the new QSCCII+ through necessary statistical manipulation. The original QSCCII was officially authorized by the Korean Society of Sasang Constitutional Medicine as the only computerized version of Sasang diagnostics. This study is the first attempt to design a new diagnostic tool for the classification of Sasang Constitutional types in North Americans with the revision of QSCCII. The subjects of this study were selected from the cooperative people among the students and staffs of the University of Bridgeport and the patients who visited the Clinic in the Health Science Center. This study takes for about 1 year from 1998. 8 to 1999. 8 The conclusions of the study can be summarized as follows: 1. Sasang constitutional types also exist in Americans. It can also naturally be inferred that Sasang Constitutional types exist in all human beings, for there are many different human races in America. 2. There are more So-Yang In's than any other types in American white people. This result confirms the hypothesis that there also exist Sasang Constitutional types in westerners. 3. The result of repetitive tests suggests that the new QSCCII+ is an effective diagnostic tool for westerners when we consider the constant diagnostic results of the QSCCII+. 4. Sasang Constitutional types exit in the sample group regardless of racial difference. 5. The question items that were not often checked by Americans need to be modified into more understandable expressions. 6. The standardization of diagnosis for Americans should be established by use of the QSCCII+ 7. It can be guessed that there are many Tae-yang In's among the 71 persons who could not be clearly classified by the QSCCII+. Due to the scarcity of Tae-yang-In in general, it is important to improve upon the discernability of the QSCC II+. 8. The results of the Sasang Constitutional distribution in North Americans are as follows: The percentage of So-yang In distribution in the sample group is 36.25%(87persons), that of Tae-eum In is 13.75%(33persons), and that of So-eum In is 20.41%(49persons).

  • PDF