• 제목/요약/키워드: 선택변수모형

검색결과 611건 처리시간 0.023초

깁스표본기법을 이용한 설명변수 선택문제에서 사전분포의 설정-선형회귀모형을 중심으로-

  • 박종선;남궁평;한숙영
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.333-343
    • /
    • 1997
  • 선형회귀분석에서 변수의 선택문제는 최적의 모형을 찾는데 아주 중요한 부분을 차지한다. George와 McCulloch(1993)는 계층적 베이즈 모형과 깁스표본법을 이용하여 선형회귀모형에서 변수를 선택하는 문제를 고려하였다. 이 논문에서는 George와 McCulloch의 모형을 바탕으로 각각의 설명변수가 모형에 포함될 사전확률을 객관적인 기준에 의하여 결정하는 문제를 고려하여 보았다.

  • PDF

OLS 및 변수선택법에 의한 다중선형회귀모형 매개변수 산정 (Parameter Estimation for Multiple Linear Regession Model by OLS and Stepwise)

  • 김경탁;김주훈;박정술
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1161-1165
    • /
    • 2006
  • 본 연구는 OLS 및 변수선택법에 의해 통계학적 모형의 매개변수를 산정하여 모형의 적용성을 입증하고 하천 주요지점에 대한 홍수위 예측을 통해 홍수예보 및 예측 업무에 기여코자하는데 연구목적이 있다. 다중선형회귀모형을 구성하기 위한 독립변수는 예보지점의 수위/유출량 자료와 상류지점의 수위/유출량 자료, 그리고 유역의 선행 평균강우량 등의 자료를 독립변수로 하여 통계학적 홍수예측을 위한 다중선형 회귀모형을 각각 구성하여 적합성 여부를 판단하였다. 매개변수 산정은 OLS(Ordinary least square root method)와 변수선택(Stepwise)방법에 의해 산정하였으며, 중랑천 유역의 2002년부터 2005년까지의 수문사상 16개를 선정하여 모형에 적용한 결과 두 매개변수 산정방법 모두 30분에서 90분 예측은 상대적으로 정확한 결과를 나타내었으며, OLS 및 변수선택법에 의한 매개변수 산정결과 변수선택법에 의한 방법이 OLS 방법보다는 상관성이나 효율지수면에서 조금 더 정확한 값을 나타내고 있으나 독립변수의 일관성을 감안한다면 변수선택법보다는 OLS방법에 의한 매개변수 산정이 타당할 것으로 사료된다. 기존의 홍수예보 업무에 활용되고 있는 수문학적 홍수예측 모형인 저류함수법의 여러 매개변수 조정에 의한 홍수위 예측 방법보다는 비교적 간단한 통계적 방법에 의한 홍수위 예측 방법으로 홍수예보의 선행시간 확보가 필수적인 중랑천과 같이 유역면적이 작은 중소하천에서의 홍수예보 업무에 효과적으로 이용 가능할 것으로 사료된다.

  • PDF

포아송 모형에서의 설명변수 선택문제 - 정규분포 설명변수하에서 - (Subset Selection in the Poisson Models - A Normal Predictors case -)

  • 박종선
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.247-255
    • /
    • 1998
  • 일반선형 모형의 하나인 포아송모형에서 설명변수들을 선택하는 문제를 고려하여 보았다 설명변수들이 정규분포를 따르는 확률변수일 때 반응변수의 조건부 분포를 통하여 모형에 필요한 설명변수의 부분집합을 선택하는 방범을 제시하였다.

  • PDF

퍼지근사추론을 이용한 교통수단 선택모형 구축 (A Development of Transport Choice Models using Fuzzy Approximate Reasoning Methods)

  • 원제무;손기복
    • 대한교통학회지
    • /
    • 제16권1호
    • /
    • pp.99-110
    • /
    • 1998
  • 본 연구에서는 인간의 판단과 유산한 구조를 갖는 퍼지근사추론모형(FARM)을 구축하여 교통수단 선택형태에 적용하고자 하였다. 이를 위해 먼저 근사추론모형의 이론적 배경을 살펴보고 버스와 지하철간의 수단선택 모형을 구축하였다. 입력변수로 버스와 지하철간의 총통행시간의 차이와 총통행비용의 차이를 선정하였으며 출력변수로 버스이용확률을 사용하였다. 각 변수에 대한 퍼지집합은 각각 5개씩의 언어적 인 표현으로 구성하였으며, 규칙은 총 25개로 설정하였다, 구축된모형의 현실적 타당성을 검토하기 위해 서 실제 조사자료와 비교하였다. 분석결과 본 연구에서 구축된 퍼지근사추론모형이 통행자들의 수단선택 행태를 현실적으로 설명하는 것으로 나타났다.

  • PDF

벌점함수를 이용한 부분최소제곱 회귀모형에서의 변수선택 (Variable Selection in PLS Regression with Penalty Function)

  • 박종선;문규종
    • Communications for Statistical Applications and Methods
    • /
    • 제15권4호
    • /
    • pp.633-642
    • /
    • 2008
  • 본 논문에서는 반응변수가 하나 이상이고 설명변수들의 수가 관측치에 비하여 상대적으로 많은 경우에 널리 사용되는 부분최소제곱회귀모형에 벌점함수를 적용하여 모형에 필요한 설명변수들을 선택하는 문제를 고려하였다. 모형에 필요한 설명변수들은 각각의 잠재변수들에 대한 최적해 문제에 벌점함수를 추가한 후 모의담금질을 이용하여 선택하였다. 실제 자료에 대한 적용 결과 모형의 설명력 및 예측력을 크게 떨어뜨리지 않으면서 필요없는 변수들을 효과적으로 제거하는 것으로 나타나 부분최소제곱회귀모형에서 최적인 설명변수들의 부분집합을 선택하는데 적용될 수 있을 것이다.

부분선형모형에서 LARS를 이용한 변수선택 (Variable selection in partial linear regression using the least angle regression)

  • 서한손;윤민;이학배
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.937-944
    • /
    • 2021
  • 본 연구는 부분선형모형에서 변수선택의 문제를 다룬다. 부분선형모형은 평활화모수 추정과 같은 비모수 추정과 선형설명변수에 대한 추정의 문제를 함께 포함하고 있어 변수선택이 쉽지 않다. 본 연구에서는 빠른 전진선택법인 LARS 를 이용한 변수선택법을 제시한다. 제안된 방법은 LARS에 의하여 선별된 변수들에 대하여 t-검정, 가능한 모든 회귀모형 비교 또는 단계별 선택법을 적용한다. 제안된 방법들의 효율성을 비교하기 위하여 실제데이터에 적용한 예제와 모의실험 결과가 제시된다.

형태요소를 적용한 화물수송수단 선택 모형의 개발 (Development of a Behavioral Mode Choice Model for Road Goods Movement)

  • 최창호
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1999년도 제35회 학술발표회 논문집
    • /
    • pp.95-109
    • /
    • 1999
  • 기존의 추정된 화물 수요모형은 화물의 출하특성과 관련된 설명변수를 중심으로 추정되었으며, 이에 따라 수송수단 선택 과정에서 화주가 느끼는 실제의 인식 상황을 모형내에 적절히 반영하지 못하였다. 본 연구는 기존 연구가 갖는 한계점을 극복하고자 화주가 수송수단을 선택할 때 느끼는 인식상황을 모형 내에 적용시켜 수단 선택 특성을 분석하였다. 연구대상은 우리나라의 188개 제조업체에서 화물자동차로 출하한 내수용 화물이며, 연구의 범위도 현실 운송체계 내에서 화주의 수단선택 행태를 설명하는 단기간의 예측으로 제한하였다. 모형추정결과 우리나라의 공로화물수송을 해석하기 위해서는, 출하중량까지를 고려한 다항로짓모형 형태이면서 인식 요소를 행태변수로 추가한 모형을 이용하는 것이 가장 적절하다는 결론을 내렸다. 그리고 이에 따라 주요한 설명 변수들의 탄력성과 화주의 인식 요소에 대한 특성값을 분석하여 제시하였다. 연구결과는 활용성 측면에서 직접 활용이 가능한 것과 잠재적인 변화를 예측하는데 이용되는 것으로 구분된다. 먼저 직접활용이 가능한 것은 수송수단과 관계된 변수들을 해석하여 얻는데, 수송비용과 수송시간에 대한 계수값의 크기와 부호, 그리고 탄력성은 정부의 정책부서나 운송인의 계획수립에 직접 적용된다. 다음으로 화주의 인식 요소는 잠재적인 변화를 예측하는데 이용되며 각 요소가 갖는 탄력성 및 특징은 운송인의 고객관리 기준이된다.

데이터마이닝의 베이지안 망 기법을 이용한 교통수단선택 모형의 설계 및 구축 (Design and Implementation of Travel Mode Choice Model Using the Bayesian Networks of Data Mining)

  • 김현기;김강수;이상민
    • 대한교통학회지
    • /
    • 제22권2호
    • /
    • pp.77-86
    • /
    • 2004
  • 데이터마이닝 (Data Mining)은 대용량의 데이터에 존재하는 관계, 패턴, 규칙 등을 효율적으로 탐색하여 이를 모형화함으로써, 유용한 정보로 추출 변환하는 일련의 과정이다. 특히 베이지안 망 (Bayesian Network)은 신경망, 유전자알고리즘 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서 베이지안 통계 이론(Bayesian Statistics Theory)를 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 기존에 적용된 바가 없는 데이터마이닝의 베이지안 망을 이용하여 수도권 교통수단선택 모형을 구축한다. 2002년도 수도권 가구통행실태조사 자료의 사회 경제적 특성과 교통체계 특성을 반영하여 베이지안 망을 이용한 교통수단선택 모형을 설계 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 성과 연령의 구성비가 변하였을 때, 교통수단선택의 변화율(확률)을 예측한다. 이 연구를 통해 현실에서는 내재하나 설명변수간의 복잡한 상관성을 배제하고 설명변수들과 교통수단선택간의 단순한 직선관계를 가정하는 기존 교통수단선택 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 교통수단에 대한 정보의 부족으로 인한 교통수단선택 모형 구축의 어려움을 극복한다. 또한 다양한 교통정책에 따른 교통수단선택의 변화를 실시간으로 시뮬레이션 할 수 있는 방법론을 개발한다.

로짓모형을 이용한 친환경차 구매행태 분석 (Analysis of Green Vehicle Purchasing Behavior Using Logit Model)

  • 한진석;이장호
    • 대한교통학회지
    • /
    • 제34권2호
    • /
    • pp.135-145
    • /
    • 2016
  • 본 연구에서는 다항로짓모형 기반의 차종선택모형을 추정하여 개별 구매자의 차종선택행태를 분석하였다. 차량운전자를 대상으로 SP 설문조사를 수행하여 모형추정을 위한 자료를 수집하였으며, 설문응답자가 선택 가능한 대안은 가솔린차, HEV, PHEV, EV로 한정하였다. 모형에 포함된 설명변수는 대부분 유의수준 5% 하에서 유의한 것으로 나타났으며, price, fuel 변수를 제외한 나머지 변수는 모두 양(+)의 부호로 상식적인 방향과 일치하여 결과가 합리적인 것으로 판단된다. 중 대형을 선택하는 구매자는 타 차급을 선택하는 구매자보다 경제적 여유가 있어 차량가격 등에 비하여 상대적으로 지출금액이 낮은 연료비는 크게 고려하지 않는 경향이 강하다. 이러한 이유로 대형 차급의 모형에서는 fuel 변수가 유의하지 않은 것으로 판단되며, 사회경제변수의 경우 경 소형에서는 age, infor 변수가, 중 대형에서는 age, infor, inc3 변수가 통계적으로 유의한 것으로 나타났다.

혼합회귀모형에서 콤포넌트 및 설명변수에 대한 벌점함수의 적용 (Joint penalization of components and predictors in mixture of regressions)

  • 박종선;모은비
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.199-211
    • /
    • 2019
  • 주어진 회귀자료에 유한혼합회귀모형을 적합하는 경우 적절한 성분의 수를 선택하고 선택된 각각의 회귀모형에서 의미있는 예측변수들의 집합을 선택하며 동시에 편의와 변동이 작은 회귀계수 추정치들을 얻는 것은 매우 중요하다. 본 연구에서는 혼합선형회귀모형에서 성분의 개수와 회귀계수에 벌점함수를 적용하여 적절한 성분의 수와 각 성분의 회귀모형에 필요한 설명변수들을 동시에 선택하는 방법을 제시하였다. 성분에 대한 벌점은 성분들의 로그값에 SCAD 벌점함수를 적용하였고 회귀계수들에는 SCAD와 더불어 MCP 및 Adplasso 벌점함수들을 사용하여 가상자료와 실제자료들에 대한 결과를 비교하였다. SCAD-SCAD 벌점함수 조합과 SCAD-MCP 조합의 경우 기존의 Luo 등 (2008)의 방법에서 문제가 되었던 과적합 문제를 해결함과 동시에 선택된 성분의 수와 회귀계수들을 효과적으로 선택하였으며 회귀계수들의 추정치에 대한 편의도 크지 않았다. 본 연구는 성분의 수가 알려져 있지 않은 회귀자료에서 적절한 성분의 수와 더불어 각 성분에 대한 회귀모형에서 모형에 필요한 예측변수들을 동시에 선택하는 방법을 제시하였다는데 의미가 있다고 하겠다.