• Title/Summary/Keyword: 선침출

Search Result 33, Processing Time 0.026 seconds

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials (폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구)

  • Hee-Seon Kim;Boram Kim;Dae-Weon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment (열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구)

  • Boram Kim;Hee-Seon Kim;Dae-Weon Kim
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.

Evaluation of Fly Ash Disposal Methods by Analysis of Leachate Migration (침출수 이동 해석을 통한 석탄재 처분방식의 평가)

  • 이상일
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.61-73
    • /
    • 1992
  • There are needs to examine the consequences of a regulation in effect to control the migration of leachates from disposal sites. The main objective of this study is to illustrate the methodology to evaluate basic disposal designs for compliance with a certain regulation, The "100/100 rule" is selected for demonstration purpose which dictates that the time for the leachates to travel a horizontal distance of 100feet (30.5m) away from the property where the landfill or pond is located must exceed 100 years. The two primary methods for disposal of ash from coal-fired utility plants, landfill and pond, are studied, Numerical groundwater flow analysis resulted in pressure head distribution and flux information in the cross-section of the domain while path line analysis provided travel path and time of leachate migration to compliance zone.ance zone.

  • PDF

Effect of Dry Grinding of Laterite on the Extraction of Nickel and Cobalt (라테라이트광의 건식분쇄가 니켈 및 코발트의 침출에 미치는 영향)

  • Kim, Wan-Tae;Choi, Do-Young;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • We investigated the effect of dry grinding of laterite on the extraction of nickel and cobalt. The major chemical compositions of the sample for this work were $SiO_2$, $Fe_2O_3$ and MgO. The sample contained 0.81% Ni and 0.02% Co. The major minerals of the sample were lizardite and quartz with minor amounts of forsterite and enstatite. The mean particle size, specific surface area and density of the ground sample decreased with increasing grinding time, while the amorphization of lizardite increased as identified by XRD analysis. The grinding enabled the extraction ratio of Ni and Co to increase by the breakdown of Mg-OH bonding in the lizardite structure. However, physical properties of quartz were not changed by grinding. The extraction ratio of Ni and Co increased with increasing grinding time. Approximately 80% of Ni and Co were extracted regardless of the kind of acid solutions when the sample was ground for 60 minutes.

Impurity analysis and acid leaching purification of silica minerals (실리카광물의 산침출 정제와 불순물 분석법 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Chae, Young-Bae
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.516-523
    • /
    • 2007
  • Purification of silica mineral has been investigated by acid leaching of pulverized silica. A series of studies has been carried out on the effect of leaching silica powder as a function of the leaching time at the constant temperature of $80^{\circ}C$ in oxalic acid, aqua regia, and two mixed acids of HF/HCl, $HF/HNO_3$. The impurities of silica and leachantes were measured by neutron activation analysis (NAA), inductively coupled plasma atomic emission spectrometry (ICP-AES), atomic absorption spectrometry, x-ray fluorescence (XRF) method and wet analysis (WA). Certain metals, such as sodium, calcium, iron, aluminium and titanium, have been found in concentrations of hundreds or even thousands of mg/kg. Comparison of purification processes of silica and analytical methods of impurities in the silica was conducted in this study.

Monitoring on the Tea with Steaming and Drying Process of Germinated Buckwheat (메밀순의 증숙 및 건조에 따른 침출차 특성 모니터링)

  • 이기동;윤성란;김정옥;허상선;서권일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.212-217
    • /
    • 2004
  • To make the germinated buckwheat tea, soluble solid contents, total flavonoid contents and organoleptic properties were investigated under various steaming time and drying temperature. The optimum condition of soluble solid contents were 6.93 min of steaming time and 73.59$^{\circ}C$ of drying temperature. Total flavonoid contents were maximum under the condition of 5.22 min of steaming time and 79.05$^{\circ}C$ of drying temperature. The optimum condition of overall palatability was 6.00 min of steaming time and 77.33$^{\circ}C$ of drying temperature. The optimum ranges of soluble solid contents, total flavonoid contents and overall palatability of the tea were 5.4∼7.0 min of steaming time and 75∼8$0^{\circ}C$ of drying temperature. The values expected in the optimum ranges were also similar to the experimental values.

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.

도시 및 농촌지역지하수내질소화합물의 거동 예측 및 질소오염관리모델개발

  • Lee, Mi-Seon;Lee, Seong-Su
    • Bulletin of Korea Environmental Preservation Association
    • /
    • v.26 no.1_2
    • /
    • pp.56-58
    • /
    • 2004
  • 최근 지하수 이용률이 해마다 증가하고 있지만 지하수의 체계적인 관리 부족으로 생활 오수 및 산업 폐수, 침출수에 의한 오염이 꾸준히 진행되고 있으며, 특히 가뭄을 비롯한 기상재해는 극심한 물 부족 현상을 낳고 농작물의 수확량을 감소시켜 식량 문제를 야기시키며, 먹는 물과 산업생산에 필요한 용수확보에도 곤란을 주어 삶의 질을 낮추는 직접적인 요인이 되고 있다. 더구나 오염된 지하수의 장시간의 방치로 사용 가능한 지하수량이 급격히 줄어들게 되며, 지하수 자원 이용률이 높은 음용수와 농·공업용수가 절대 부족하게 되어 농업 및 산업 전체, 그리고 인간생활 자체에까지 큰 악영향을 미치게 된다.

  • PDF

A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method (열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구)

  • Shim, Hae-Ri;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1229-1235
    • /
    • 2015
  • Scaffold fabrication technology using a 3D printer was developed for damaged bone tissue regeneration. A scaffold for bone tissue regeneration application should be biocompatible, biodegradable, and have an adequate mechanical strength. Moreover, the scaffold should have pores of satisfactory quantity and interconnection. In this study, we used the polymer deposition system (PDS) based on fused deposition modeling (FDM) to fabricate a 3D scaffold. The materials used were polycaprolactone (PCL) and alginic acid sodium salt (sodium alginate, SA). The salt-leaching method was used to fabricate dual pores on the 3D scaffold. The 3D scaffold with dual pores was observed using SEM-EDS (scanning electron microscope-energy dispersive spectroscopy) and evaluated through in-vitro tests using MG63 cells.