• Title/Summary/Keyword: 선재치환

Search Result 4, Processing Time 0.016 seconds

A Study on the Shape Analysis of Membrane Structures Using Line Elements (선재 요소를 이용한 막 구조물의 형상해석에 관한 연구)

  • Kim, Seung-Deog;Lee, Shin-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.45-60
    • /
    • 2010
  • Nonlinear problems for membrane structures are very sensitive in convergence procedure in nonlinear iterations. Therefore many researchers have suggested a lot of ideas in published papers. In this study, authors are trying to get easier solution for taking membrane shape by initial stresses from substitution of the membrane to line elements. To obtain nonlinear stiffness, the nonlinear finite element method is used for both membrane and cable elements, and only geometric nonlinear terms are taken for shape analysis. By some examined models, we can find that the substituted models show better results to get, initial shape in which the concentrating phenomenon is removed at edge parts.

  • PDF

Corrosion Characteristics and Oxide Microstructure of Zirconium Alloys for Nuclear Fuel Cladding (핵연료피복관용 Zr 합금의 부식특성 및 산화막 미세구조)

  • Jeong, Yong-Hwan;Baek, Jong-Hyeok;Kim, Seon-Jae;Kim, Gyeong-Ho;Choi, Byeong-Gwon;Jung, Yeon-Ho
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.368-374
    • /
    • 1998
  • The corrosion characteristics of zirconium alloys have been investigated in various aqueous solutions of LiOH. NaOH, KOH, RbOH. and CsOH at 3S$0^{\circ}C$. The concentrations of solutions were set to 4.3 mmol and 32.Smmol with equimolar $M^+$ and OH . The oxide characterization was performed using TEM on the samples corroded in 32. Smmol LiOH, NaOH, and KOH solution. The samples were prepared to have the same oxide thickness for the pretransition and post- transition regimes. Considering the trend of experimental data, the cation would playa major role in the corrosion process of Zr alloys in alkali hydroxide solutions. The microstructures of the oxides formed in various solutions were quite different. In LiOH solution the oxides grown in pre-transition as well as post-transition had the equiaxed structures with many pores and open grain boundaries. The oxides grown in NaOH solution had the protective columnar structures in pre-transition and the equiaxed structures with many open grain boundaries in post- transition. On the other hand. in KOH solution the columnar structure was maintained from pre- transition to post- transition. It was considered that the cation incorporation into zirconium oxide controlled the oxide characteristics and the corrosion acceleration in alkali hydroxide solutions.

  • PDF

Characteristics of Mineralogy and Nanocrystals of Ingredient Materials of $Lumilite^{(R)}$ for Water Treatment (수질개선제 $Lumilite^{(R)}$ 원료광물의 광물학적 및 나노결정학적의 특징)

  • Lee, Jin-Kook;Park, Hi-Ho;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • Characterization of mineralogy and nanocrystals of ingredient materials of $Lumilite^{(R)}$ used for water treatment was made using optical microscopy, XRD, SEM, FTIR, and XRF analyses. Constituent minerals identified by XRD and microscope are clinoptilolite, illite, quartz, and albite, characterized by dense and fine texture. The cross section of nanocrystals with the size $70{$\sim}100\;nm$ is generally round or subround. Numerous spheroids with few nanometers in diameter are extensively formed on the surface of nanocrystals. Bulk chemistry is $SiO_2$ $74.22{\sim}75.65\;wt.%$, $Al_2O_3$ $13.25{\sim}13.72\;wt.%$, CaO $4.23{\sim}5.15\;wt.%$, with other major elements being minimal. When heated to $700^{\circ}C$, the crystal structure was mostly destroyed, though it persisted to $500^{\circ}C$. It is likely that high capacity and applications of $Lumilite^{(R)}$ for water treatment are originated from its structural properties such as development of nanocrystals and various tiny pores.

The Corrosion Behavior of Hydrogen-Charged Zircaloy-4 Alloys (수소 장입된 Zircaloy-4 합금에서의 부식거동)

  • Kim, Seon-Jae;Kim, Gyeong-Ho;Baek, Jong-Hyeok;Choe, Byeong-Gwon;Jeong, Yo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.268-273
    • /
    • 1998
  • Standard Zircaloy-4 sheets, charged with 230-250ppm hydrogen by the gas-charging method and homogenized at $400^{\circ}C$ for 72hrs in a vacuum, were corroded in pure water and aqueous LiOH solutions using static autoclaves at $350^{\circ}C$. Their corrosion behaviors were characterized by measuring their weight gains with the corrosion time and observing their microstructures using an optical microscope and a scanning electron microscope. The elemental depth profiles for hydrogen and lithium were measured using a secondary ion mass spectrometry(S1MS) to confirm their distributions at the oxidelmetal interface. The normal Zircaloy-4 specimens corroded abruptly and heavily at the concentration of Li ions more than 30ppm in the aqueous solution. This is due to accelerations by the rapid oxidation of many Zr- hydrides formed by the large amount of absorbed hydrogen, resulting from the increased substitution of $Li^{+}$ ions with $Zr^{4+}$-sites in the oxide as the Li ion concentration increased. The specimens that had been charged with amounts of hydrogen greater than its solubility corroded early with a more rapid acceleration than normal specimens, regardless of the corrosion solutions. At longer corrosion times. however, normal specimens showed a rather accelerated corrosion rate compared to the hydrogen-charged specimens. These slower corrosion rates of the hydrogen-charged specimens at the longer corrosion times would be due to the pre-existent Zr-hydride in the matrix, which causes the hydrogen pick- up into the specimen to be depressed, when the oxide with an appropriate thickness formed.

  • PDF