• Title/Summary/Keyword: 선의 변형

Search Result 912, Processing Time 0.034 seconds

Dynamic Deformation Behavior of Rubber Under High Strain-Rate Compressive Loading by Using Plastic SHPB Technique (플라스틱 SHPB기법을 사용한 고무의 고변형률 하중 하에서의 동적변형 거동)

  • 이억섭;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.158-165
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain rate of the order of 10$^3$/s∼l0$^4$/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from structure under varying dynamic loading are determined by using plastic SHPB technique. A transition point to scope with the dynamic deformation behavior of rubber-like material is defined in this paper and used to characterize the specifics of the dynamic deformation of rubber materials.

SHPB기법을 사용한 고변형률 속도 하중하에서의 합성수지(PH162/ PB160)의 동적 변형 거동

  • 김성현;이억섭;이종원;황시원;조규상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.47-47
    • /
    • 2004
  • 충격하중을 받는 재료의 거동에 관한 연구는 공학의 넓은 분야에 깊은 관계를 가지고 있다. 특히 동적하중을 받는 경계조건 하에서 사용되는 구조물을 정밀하게 설계 제작하는 필요성이 고조됨에 따라 여러 재료들의 고변형률 속도로 변형될 경우에 대한 역학적인 성질이 중요한 과제로 떠오르고 있다. 구조물의 건전성과 신뢰성을 향상시키기 위해서는 구조물이 실제적으로 받는 여러 조건의 하중하에서의 실험적으로 정밀하게 획득된 정확하고, 완벽한 재료 물성치가 필요하다. (중략)

  • PDF

Image Transformation Invariant Harris Corner Selection Method Using Local Maxima and Sorting (국부 최대값과 정렬을 이용한 영상 변형에 강인한 해리스 특징점 선택 방법)

  • Lee, Jun-Woo;Cho, Ik-Hwan;Cho, A-Young;Lee, Ki-Sun;Jeong, Dong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.243-244
    • /
    • 2007
  • 다양한 디지털 컨텐츠를 검색하기 위해 다양한 디스크립터(Descriptor)가 제안되어 왔다. 그 중 특징점을 기반으로 하는 디스크립터를 이용하여 원본 영상과 기하학적 변형을 포함하는 다양한 변형 영상을 서로 정확하게 정합시키기 위해서는 각 영상에서 동일한 위치에 동일한 개수의 특징점이 추출되는 것이 유리하다. 본 논문에서는 널리 사용되고 있는 해리스(Harris) 특징점 추출 방법을 기반으로 국부 최대값과 정렬을 이용하여 원하는 개수의 특징점을 선택하는 방법을 제안한다.

  • PDF

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Effect of Different Energy Frames on the Impact Velocity of Strain Energy Frame Impact Machine (에너지 프레임 종류에 따른 변형에너지 프레임 충격시험장치의 충격속도)

  • PARK, Seung Hun;PARK, Jun Kil;TRAN, Tuan Kiet;KIM, Dong Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.363-375
    • /
    • 2015
  • This research investigated the effects of diameter and material of energy frame on the impact velocity or strain rate of Strain Energy Frame Impact Machine (SEFIM). The impact speed of SEFIM have been clearly affected by changing the diameter and material of the energy frame. The reduced diameter of the energy frame clearly increased the impact velocity owing to the higher strain at the moment of coupler breakage. And, titanium alloy energy frame produced the fastest speed of impact among three materials including steel, aluminum and titanium alloys because titanium alloy has faster wave velocity than steel. But, aluminium energy frame was broken during impact tests. In addition, the tensile stress versus strain response of high performance fiber reinforced cementitious composites at higher and wider strain rates between 10 and 72 /sec was successfully obtained by using four different energy frames.

Catenary Measurement System for Real-Time Automated Diahnosis (실시간 자동화 진단을 위한 전차선 검측시스템)

  • Kim, Jeong-Yeon;Park, Jong-Gook;Lee, Byeong-Gon;Hong, Hyun-Pyo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1020-1026
    • /
    • 2011
  • In this paper, we propose a method that measures the height and stagger of an catenary using the laser profile images. One line laser and area scanner CCD cameras are used. To quickly and accurately extract, from a photographed image, the area of the overhead line on which the line laser is shone, we consider the established fact that the catenary is the lowest among the electric wires. Here we are solving the the distance to the catenary if we know the distance the camera is from the ground and the angle of the catenary in the field of view. The angle will be related to the number of pixels in the image. This pixels per degree is a constant for the camera. Also, because of the different pixel resolution of the camera according to the overhead line position, we compensate the measurement result through camera calibration.

  • PDF

Tests on Transfer Bond Performance of Epoxy Coated Prestressing Strands (에폭시 코팅 처리된 PS강선의 정착부착성능 실험)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.89-100
    • /
    • 1994
  • The current test procedure for transfer length, which determine transfer length by measuring concrete strain, has an actual bond stress state in the prestressed pretensioned member : however, it is difficult to determine the bond properties of maximum bond stress and bond stiffness with this method. It is also difficult for design engineer to understand and select a correct safety criterion from the widely distributed results of such a ransfer test alone. An alternative testing procedure is provided here to determine the bond properties without measuring the concrete strain. In this test the bond stress is measured directly by creating a similar boundary condition within the transfer length in a real beam during the transfer of prestressing force. The prestressing force was released step by step by step from the unloading side. The release of force induces a swelling of the strand at the unloading side of concrete block, bonding force in the block, and a bond slip of the strand toward the other side of the block. Two center-hole load cells are used to record the end loads until the point of general bond slip(maximum bond stress). It is suggested that this test procedure be performed with the ordinary transfer test when determining the transfer length in a prestressed, pretensioned concrete beam.

Improved deformation energy for enhancing the visual quality of planar shape deformation (평면 형상 변형의 시각적 품질 향상을 위한 개선된 형상 변형 에너지)

  • Yoo, Kwangseok;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • We present improved deformation energy to enhance the visual quality of a shape deformation technique, where we preserve the local structure of an input planar shape. The deformation energy, in general, consists of several constraints such as Laplacian coordinate constraint to preserve the quality of deformed silhouette edges, mean value coordinates and edge length constraints to preserve the quality of deformed internal shape, and user-specified position constraints to control the shape deformation. When the positions of user-specified vertices change, shape deformation techniques compute the positions of the other vertices by means of nonlinear least squares optimization to minimize the deformation energy. When a user-specified vertex changes its position rapidly, it is frequently observed that the visual quality of the deformed shape decrease rapidly, which is mainly caused by unnecessary enlargement of the Laplacian vectors and unnecessary change of the edge directions along the boundary of the shape. In this paper, we propose improved deformation energy by prohibiting the Laplacian and edge length constraints from changing unnecessarily. The proposed deformation energy incorporated with well-known optimization technique can enhance the visual quality of shape deformation along the silhouette and within the interior of the planar shape while sacrificing only a little execution time.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Analysis of Compressive Deformation Behaviors of Aluminum Alloy Using a Split Hopkinson Pressure Bar Test with an Acoustic Emission Technique (SHPB 시험과 음향방출법을 이용한 알루미늄 합금의 압축 변형거동 분석)

  • Kim, Jong-Tak;Woo, Sung-Choong;Sakong, Jae;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • In this study, the compressive deformation behaviors of aluminum alloy under high strain rates were investigated by means of a SHPB test. An acoustic emission (AE) technique was also employed to monitor the signals detected from the deformation during the entire impact by using an AE sensor connected to the specimen with a waveguide in real time. AE signals were analyzed in terms of AE amplitude, AE energy and peak frequency. The impacted specimen surface and side area were observed after the test to identify the particular features in the AE signal corresponding to the specific types of damage mechanisms. As the strain increased, the AE amplitude and AE energy increased whereas the AE peak frequency decreased. It was elucidated that each AE signal was closely associated with the specific damage mechanism in the material.