• 제목/요약/키워드: 선별성능

검색결과 443건 처리시간 0.026초

근적외선 분광법을 이용한 콩과 이물질의 판별 (Identification of Foreign Objects in Soybeans Using Near-infrared Spectroscopy)

  • 임종국;강석원;이강진;모창연;손재용
    • 산업식품공학
    • /
    • 제15권2호
    • /
    • pp.136-142
    • /
    • 2011
  • 본 연구에서는 정상 콩과 이에 혼입되는 이물질을 판별하기 위해 900 nm에서 1800 nm의 파장대역에서 단색화장치가 장착된 근적외선 분광장치를 이용하여 획득된 콩과 이물질의 반사 스펙트럼의 세기를 이용하여 각각의 판별예측모델을 개발하고 그 성능과 판별정확도를 검증해보았다. 정상콩 60 립과 이물질 60 점을 각각 2 회 반복하여 측정한 총 240 개의 반사스펙트럼에 대해서 모델 개발용인 calibration group으로 168 개를, 나머지 72 개는 개발된 모델을 예측하는 prediction group으로 나누어 사용하였다. 획득된 스펙트럼은 광원의 불안정함, 시료의 크기와 형태에서 기인되는 여러 변이들을 최소화하기 위해 다양한 수학적인 전처리를 적용하였으며 판별예측모델의 개발을 위해 PLS-DA와 SIMCA 방법을 사용하여 모델의 예측 성능과 판별율을 검토하였다. PLS-DA에서 모델 개발에 사용된 84 개의 정상 콩 스펙트럼 CLASS I은 적용된 모든 전처리에서 100%의 판별율을 보여주었으며 이물질 스펙트럼 CLASS II에서도 SNV 전처리를 제외하고는 모두 100% 이물질로 판별하여 분류하였다. 개발된 PLS-DA의 모델에 대한 prediction group의 검증에 있어서는 평균값 정규화 전처리 방법이 정상 콩과 이물질에서 100% 판별율을 보여주었다. SIMCA를 이용한 이물질 판별예측모델 개발은 PLS-DA와 비교할 때 상대적으로 저조한 판별율 결과를 나타냈으며 최대값 정규화와 일정 범위값 정규화의 전처리 방법을 적용한 모델이 평균 판별율 94.4%로 다소 양호한 결과를 보여주었다. 따라서 콩에 혼입되어 있는 이물질을 판별하는 시스템을 개발하는 데 있어서 근적외선 분광장치를 이용하여 획득한 반사도 스펙트럼은 PLS-DA로 판별예측모델을 개발하고 최적의 전처리 방법을 적용한다면 콩과 이물질의 선별시에 보다 나은 판별율을 얻을 수 있을 것이다.

부유식 해양구조물의 플로트오버 설치용 LMU 최적설계 (LMU Design Optimization for the Float-Over Installation of Floating Offshore Platforms)

  • 김현석;박병재;성홍근;이강수
    • 한국전산구조공학회논문집
    • /
    • 제34권1호
    • /
    • pp.43-50
    • /
    • 2021
  • LMU(Leg Mating Unit)는 해양구조물의 플로트오버 실치에서 활용되는 장비 중 하나로 충격을 흡수하는 부분과 결합부로 구성된다. 본 연구에서는 최적설계를 통해 부유식 해양구조물의 플로트오버 설치용 LMU의 성능을 개선하여 설계 요구 조건을 만족하는 설계를 개발하였다. 초기설계는 고정식 해양구조물의 플로트오버 설치용으로 개발된 것의 제원을 참조하였으며, 초탄성재료의 거동을 표현하기 위해 Mooney-Rivlin 모델을 활용하였다. 설계민감도해석 결과를 바탕으로 중요도에 따라 설계 변수들을 선별하였고, 진화알고리듬 기반 최적설계를 수행하였다. 최적설계 문제에서 목적함수는 LMU의 중량이며, 제약 조건은 LMU에 작용하는 최대 폰-미세스 응력과 LMU의 성능을 평가할 수 있는 반발력이다.

균형 랜덤 포레스트를 이용한 이륜차 보험사기 적발 모형 개발 (Bike Insurance Fraud Detection Model Using Balanced Randomforest Algorithm)

  • 김승훈;이수일;김태호
    • 디지털융복합연구
    • /
    • 제20권2호
    • /
    • pp.241-250
    • /
    • 2022
  • COVID-19 여파로 인한 비대면 서비스와 가정 재정 불안정성의 증가로 이륜차 보험사기 발생이 예상되고 있다. 이와 함께 보험사기 수법도 갈수록 교묘해지고 있다. 하지만 비대면 배달 수요와 연관된 이륜차 교통사고와 보험사기 적발 모형 관련 연구는 매우 미흡한 실정이다. 이에 본 연구는 보험사기의 표본 편중문제를 해결하기 위해 균형 랜덤포레스트 알고리즘을 이용하고 보험사기 조사 전문가의 정성적인 판단 기준을 반영한 변수를 모델에 포함하여 적용성을 향상시키며 적발력 높은 이륜차 보험사기 모형을 개발하고자 한다. 보험사기 적발 모형 개발 결과, 기존의 비균형 랜덤 포레스트 모형에 비해 균형 랜덤 포레스트가 보험 사기혐의자를 분류하는 데 있어 통계적으로 우수한 점을 확인할 수 있었다. 특히, 총 26개의 변수를 토대로 탐색적 변수 조합을 적용한 모형의 예측 성능이 가장 높았지만 일부 변수만을 사용한 확인적 모형의 예측 성능도 크게 떨어지지 않은 와중에, 정성적인 보험사기 전문가가 선정한 변수만을 사용한 확인적 모형은 예측력이 떨어지는 것을 확인하였다. 또한, 총 26개의 변수 중 운전자 성별, 연령, 운전자 피보험자 일치 여부, 미수선 청구금액, 대인보험금 등이 중요한 변수로 확인되어 이를 활용해 이륜차 보험사기 혐의자 선별을 위한 적극적인 대처가 필요해 보인다.

주관적 평가법을 이용한 초등학교 저학년 교실의 청취환경 조사 (Investigation of the listening environment for lower grade students in elementary school using subjective tests)

  • 박찬재;한찬훈
    • 한국음향학회지
    • /
    • 제40권3호
    • /
    • pp.201-212
    • /
    • 2021
  • 본 연구는 만 9세 이하 아동과 같은 청력 비완전자에게 적합한 교실의 음향성능 기준을 제시하기 위한 사전연구로써 수행되었다. 이를 위해 초등학교 저학년 교실의 청취환경 특성을 분석하기 위하여 청주시 소재 초등학교 2곳에서 총 264명의 학생을 대상으로 설문조사 및 음성명료도 평가와 같은 주관적 평가를 진행했다. 설문조사 결과 학생들이 수업 내용 이해에 가장 도움이 되는 정보형식은 교사의 음성이라고 응답했다. 또한 현재 교사의 음성에 대해 음량은 '보통' 수준이며 명료도에는 높은 만족도를 보이고 있었다. 교실의 음향성능에 대해서도 소음의 경우 '보통'이며 잔향감은 '매우 짧다'는 의견이 가장 많아서 청취환경에 대한 전반적인 만족도가 높은 편인 것으로 파악되었다. 또한 초등학교 저학년 학생들을 위해 선별된 시험용 단어목록을 이용해 음성명료도 평가를 수행한 결과 만 8세 아동의 경우 음원으로부터의 종축거리가 음성인지에 영향을 미치는 요인임을 유추해볼 수 있었다.

일부 목재의 연소 시 발생되는 연기의 위험성 평가 (Risk Assessment of Smoke Generated During Combustion for Some Wood)

  • 정영진;진의
    • 공업화학
    • /
    • 제33권4호
    • /
    • pp.373-380
    • /
    • 2022
  • 본 연구에서는 화재 시 연기안전 등급 평가를 표준화하기 위해 Chung's equations 1, 2와 3을 확장하여 Chung's equations-V인 연기성능지수-V와 연기성장지수-V를 산정하였다. 5종류의 목재를 선별하여 ISO 5660-1의 규격에 의한 콘칼로리미터(cone calorimeter)법으로 연기지수들을 측정하였다. Chung's equation-VI에 따라 연기위험성지수-VI에 의한 연기위험성을 등급화 하였다. 연기위험성지수-VI는 PMMA(1) ≈ 단풍나무(1.01) < 물푸레나무(1.57) < 전나무(4.98) < 오동나무(46.15) < 적삼목(106.26)의 순서로 증가하였다. 단풍나무, 물푸레나무의 연기위험성이 가장 낮고, 오동나무, 적삼목이 가장 높은 것으로 예측되었다. 시험편 5종의 일산화탄소 평균생성속도는 0.0009~0.0024 g/s으로 나타났으며, 이들 목재는 기준 물질인 polymethyl methacrylate보다 불완전연소 물질임을 나타내었다. 선정된 목재들의 연기특성은 체적밀도가 높을수록 연기성능지수-V (SPI-V)이 증가하였고, 연기위험성지수-VI (SRI-VI)가 감소하였다.

다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정 (Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data)

  • 김호림;유순영;윤성택;김경호;이군택;이정호;허철호;류동우
    • 자원환경지질
    • /
    • 제55권4호
    • /
    • pp.353-366
    • /
    • 2022
  • 지구과학 데이터(지오데이터)의 공간 이질성, 희소성 및 고차원성으로 인해 공간 분포 추정에 어려움이 있다. 따라서 지구과학의 많은 응용 분야에서 지오데이터의 고유 특성을 고려할 수 있는 공간 추정 기법이 필요하다. 본 연구에서는 기계 학습 알고리즘 중 하나인 가우시안 혼합 모델(Gaussian Mixture Model; GMM)을 이용하여 공간 예측 방법을 제공하고자 하였다. 제안된 기법의 성능을 검증하기 위해, 옛 제련소 부지에서 휴대용 X선 형광분석기(PXRF) 및 유도결합플라즈마-원자방출분광법(ICP-AES)을 이용하여 분석된 토양 농도 자료를 활용하였다. ICP-AES를 이용해 분석된 As와 Pb를 주변수로 하고, 나머지 자료는 보조변수로 활용하였다. 다차원의 보조변수 중 중요 변수를 선별하기 위해 랜덤포레스트 기반의 변수선택법을 적용하였다. ICP-AES 및 PXRF를 통해 구축된 다변량 데이터를 사용한 GMM의 결과를 단변량 및 이변량 데이터를 사용한 정규 크리깅(Ordinary Kriging; OK) 및 정규 공동크리깅(Ordinary Co-Kriging; OCK)의 결과와 비교하였다. GMM의 결과는 OK 및 OCK의 결과보다 낮은 평균 제곱근 편차(RMSE; 비소는 최대 0.11 및 납은 0.33까지 향상)와 높은 상관관계(r; 비소는 최대 0.31 및 납은 0.46까지 향상)를 제공하였다. 이는 GMM을 사용할 경우 토양 오염의 범위 해석의 성능을 향상시킬 수 있음을 지시한다. 본 연구는 다 변량 공간추정 접근법이 복잡하고 이질적인 지질 및 지구 화학자료의 특징을 이해하는 데 효과적으로 적용될 수 있음을 증명하였다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.

이질성 학습을 통한 문서 분류의 정확성 향상 기법 (Improving the Accuracy of Document Classification by Learning Heterogeneity)

  • 윌리엄;현윤진;김남규
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.21-44
    • /
    • 2018
  • 최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.

대표 패턴 마이닝에 활용되는 패턴 압축 기법들에 대한 분석 및 성능 평가 (Analysis and Performance Evaluation of Pattern Condensing Techniques used in Representative Pattern Mining)

  • 이강인;윤은일
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.77-83
    • /
    • 2015
  • 데이터 마이닝에서 활발히 연구되고 있는 주요 분야들 가운데 하나인 빈발 패턴 마이닝은 대규모의 데이터 집합 또는 데이터베이스로부터 숨겨진 유용한 패턴 정보를 추출하기 위한 방법이다. 또한 이 기법으로 얻을 수 있는 결과물을 통해 데이터베이스내의 다양하고 중요한 특징들을 더욱 손쉽게 자동적으로 분석할 수 있기 때문에 많은 응용영역에도 활발히 적용되고 있다. 하지만 이러한 데이터베이스로부터 단순히 사용자에 의해 설정된 최소 지지도 임계값만을 가지고 이를 만족하는 모든 패턴들을 추출하는 기존의 전통적인 빈발 패턴 마이닝 방식은 데이터베이스의 특성과 임계값 설정의 정도에 따라 극도로 많은 수의 결과 패턴을 생성하는 문제를 가지며, 이에 따른 시간 및 공간 자원의 낭비를 초래한다. 또한 과도하게 생성된 패턴에 대한 분석의 어려움 역시 심각한 문제가 된다. 기존의 빈발 패턴 마이닝 접근방법들이 직면한 이러한 문제를 해결하고자, 데이터베이스로부터 가능한 모든 빈발 패턴들을 마이닝하는 것이 아닌, 이들에 대한 대표 패턴들만은 선별적으로 추출할 수 있도록 하는 대표 패턴 마이닝의 개념과 다양한 관련 기법들이 제안되었다. 본 논문에서는 생성되는 각 패턴의 최대성 또는 폐쇄성을 고려하는 패턴 압축 기법들에 대한 특성들을 기술하고, 이에대한 비교 및 분석을 진행한다. 최대 빈발 패턴 혹은 닫힌 빈발 패턴들을 마이닝함으로써, 효과적인 패턴 압축이 가능하며, 더 적은 시공간 자원으로 마이닝 작업을 수행할 수 있다. 또한 압축된 패턴들은 필요시 다시 원래의 패턴 형태로 복구가 가능한 특징이 있으며, 특히 닫힌 패턴 접근 방법을 이용하면 패턴을 압축하고 다시 해제하는 과정에서 어떠한 정보의 손실도 일어나지 않는다. 본 논문에서는 같은 플랫폼 상에서 동일한 구현 수준의 알고리즘에 대해 실세계로부터 축적된 실 데이터셋들을 가지고 상기 기법들에 대한 성능평가를 진행함으로써, 각 기법이 패턴 생성, 수행 시간, 메모리 사용량과 같은 실제적인 마이닝 성능에 대해 어떠한 영향을 미치는지에 대한 심층적 분석결과를 보인다.

딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발 (Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island)

  • 박재성;정지호;정진아;김기홍;신재현;이동엽;정새봄
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.697-723
    • /
    • 2022
  • 본연구에서는 제주도의 중제주 수역 내에 위치하는 총 12개 지하수 관정에서 미래 30일 기간의 지하수위를 예측할 수 있는 모델을 개발하였다. 예측 모델개발을 위해 시계열 예측에 적합한 딥러닝 기법의 하나인 누적 장단기 메모리(stacked-LSTM) 기법을 이용하였으며, 2001년에서 2022년 동안 관측된 일 단위 강수량, 지하수 이용량 및 지하수위 자료가 예측 모델개발에 활용되었다. 특히, 본 연구에서는 입력자료의 종류 및 과거 자료의 순차 길이에 따라 다양한 모델을 구축하고 성능을 비교함으로써 딥러닝 기반 예측 모델개발에서 고려하여야 할 사항에 대한 검토와 절차를 제시하였다. 예측 모델개발 결과, 강수량, 지하수 이용량 및 과거 지하수위를 모두 입력자료로 활용하는 모델의 예측성능이 가장 뛰어난 것으로 확인되었으며, 입력으로 활용되는 과거 자료의 순차가 길수록 예측의 성능이 향상됨을 확인하였다. 이는 제주도의 깊은 지하수위 심도로 인하여 강수와 지하수 함양 간 지연시간이 길기 때문으로 판단된다. 이뿐만 아니라, 지하수 이용량 자료의 경우, 모든 이용량 자료를 활용하는 것보다 예측하고자 하는 지점의 지하수위에 민감한 영향을 주는 관정을 선별하여 입력자료로 이용하는 것이 예측 모델의 성능 개선에 긍정적 영향을 주는 것을 확인하였다. 본 연구에서 개발된 지하수위 예측 모델은 현재의 강수량 및 지하수 이용량을 기반으로 미래의 지하수위를 예측할 수 있어 미래의 지하수량에 대한 건전성 정보를 제공함에 따라 적정 지하수량 유지를 위한 다양한 관리방안 마련에 도움이 될 것으로 판단된다.