• Title/Summary/Keyword: 선배열 예인 소나

Search Result 7, Processing Time 0.009 seconds

Robust Beamforming Method by Linear Array Shape Estimation using Kanlman Filter (칼만필터 선배열 형상 추정에 의한 견실한 빔형성 기법 연구)

  • 한정우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.18-21
    • /
    • 1996
  • 예인형 선배열 소나에서 기존의 선배열 빔형성 기법을 적용하면 예인함 기동시 선배열 형상 변형에 의해 심각한 성능 저하 현상이 나타난다. 이러한 문제 해결을 위해 센서배열 변형을 고려한 견실한 빔형성 기법은 선배열 형상 추정을 위해 칼만필터를 이용한 형상 추정기법을 이용하고, 변형보상 빔형성을 위해 선배열 세그먼트 기울기 추정값을 이용하는 변형보상 빔형성 알고리즘을 제안하였다. 제안된 기법을 기존의 빔형성 기법을 적용하여 시뮬레이션에 의해 제안된 기법의 보상성능을 입증 하였다.

  • PDF

Weighted polynomial fitting method for estimating shape of acoustic sensor array (음향 센서 배열 형상 추정을 위한 가중 다항 근사화 기법)

  • Kim, Dong Gwan;Kim, Yong Guk;Choi, Chang-ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.255-262
    • /
    • 2020
  • In modern passive sonar systems, a towed array sensor is used to minimize the effects of own ship noise and to get a higher SNR. The thin and long towed array sensor can be guided in a non-linear form according to the maneuvering of tow-ship. If this change of the array shape is not considered, the performance of beamformer may deteriorate. In order to properly beamform the elements in the array, an accurate estimate of the array shape is required. Various techniques exist for estimating the shape of the linear array. In the case of a method using a heading sensor, the estimation performance may be degraded due to the effect of heading sensor noise. As means of removing this potential error, weighted polynomial fitting technique for estimating array shape is developed here. In order to evaluate the performance of proposed method, we conducted computer simulation. From the experiments, it was confirmed that the proposed method is more robust to noise than the conventional method.

Self Noise Analysis of Towed Array Sonar Induced by Axisymmetric Vibrations Propagating Along Fluid-filled Elastic Hoses (선배열 예인 음탐기의 음향 모듈을 따라 전파하는 축대칭 진동에 기인한 음향 센서 자체 소음 해석)

  • Ryue, Jung-Soo;Shin, Hyun-Kyung;Ahn, Hyung-Taek;Kwon, Oh-Cho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.437-446
    • /
    • 2011
  • Performance of array sonars towed underwater is limited due to the self-noise induced mainly by the strumming vibration of the towing cable and also turbulent flow around the acoustic sensor module. The vibration of the towing cable generates axisymmetric waves that propagate along the acoustic module of the array sonar and produce self-noise. The present study aims to investigate the characteristics of the self-noise induced by the axisymmetric vibrations of the acoustic module. The waves of interest are the bulge and extensional waves propagating along the fluid-filled elastic hose. Dispersion relations of these waves are predicted by means of the numerical simulation to evaluate the wave speeds. The self-noise induced by the axisymmetric waves are formulated taking into account the damping of the elastic hose and the effect of the damping is investigated.

A Study on Numerical Simulation for Dynamic Analysis of Towed Low-Tension Cable with Nonuniform Characteristics (불균일 단면을 갖는 저장력 예인케이블의 동적해석을 위한 수치해석적 연구)

  • 정동호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

Modeling Method for Simulating The Winding Motion of a Towing Cable (예인케이블 조출 거동 해석을 위한 모델링 기법)

  • Euntaek Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.473-481
    • /
    • 2024
  • In this paper, we introduce a newly developed winding model to simulate the motion of underwater cable consisting of winch drums. It is assumed that only tension affects the underwater cable motion. This assumption is suitable for simulating the underwater cable motion towed by a navel vessel in a straight ahead maneuver. The underwater cable is discretized using Nodal Position Finite Element Method. This numerical method is known to be suitable for predicting the underwater cable motion with large deformation because it can express geometric nonlinearity. In this paper, the validity of the numerical method was secured by comparing it with the depth information of towing cable measured through sea experiments.

A Study on Design and Performance Test for Underwater Towing Sonar Cable (수중 예인 소나용 케이블 설계 및 성능에 대한 연구)

  • Jae-Hyun, Na;Eui-Chang, Hong;Seung-Cheon, Kim;Dong-Gil, Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1095-1104
    • /
    • 2022
  • The towing cable plays a role in dropping and salvaging the Towed Array Sonar System (TASS) into the water and transmitting the signal (information) detected by the sonar in the water to the probe or surface ship. The towing cable consists of a heavy cable and a lightweight cable in detail. The towing cable for sonar is characterized by high reliability and durability as the underwater environment deteriorates as the operating depth increases. Due to these restrictions, cases designed and manufactured in Korea are extremely rare. The core technology for towing cable design secured through this study is expected to be used in various ways in the defense industry and the private sector.

Analysis of statistical characteristics of bistatic reverberation in the east sea (동해 해역에서 양상태 잔향음 통계적 특징 분석)

  • Yeom, Su-Hyeon;Yoon, Seunghyun;Yang, Haesang;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.435-445
    • /
    • 2022
  • In this study, the reverberation of a bistatic sonar operated in southeastern coast in the East Sea in July 2020 was analyzed. The reverberation sensor data were collected through an LFM sound source towed by a research vessel and a horizontal line array receiver 1 km to 5 km away from it. The reverberation sensor data was analyzed by various methods including geo-plot after signal processing. Through this, it was confirmed that the angle reflected from the sound source through the scatterer to the receiver has a dominant influence on the distribution of the reverberation sound, and the probability distribution characteristics of bistatic sonar reverberation varies for each beam. In addition, parametric factors of K distribution and Rayleigh distribution were estimated from the sample through moment method estimation. Using the Kolmogorov-Smirnov test at the confidence level of 0.05, the distribution probability of the data was analyzed. As a result, it could be observed that the reverberation follows a Rayleigh probability distribution, and it could be estimated that this was the effect of a low reverberation to noise ratio.