• Title/Summary/Keyword: 선박운항 시뮬레이션

Search Result 196, Processing Time 0.026 seconds

A Study on Estimation Technique of Manoeuvring Difficulty Using the Ship Manoeuvre Simulator for Berthing/Deberthing (선박 접이안 조종 시뮬레이터를 이용한 조종위험도 평가 기법에 관한 연구)

  • Yang Seung-Yeul;Sohn Kyoung-Ho;Lee Hee-Yong;Ha Mun-Keun;Kim Hyun-Soo;Lee JIn-Ho;Im Nam-Kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.81-87
    • /
    • 2004
  • It includes the considerable concentration and dangerousness as the peculiar work of a pilot and dock-master to berthing/deberthing the big object as for the ship within the port or the ship yard. A tug utilization is getting increased in this berthing/deberthing work and the own ship is affected a lot by external force due to moving with low advance speed. In this study, we constructed the 2 dimension virtual system which can conduct the berthing/deberthing manoeuvring work by using mainly tugs in a external force, particularly strong wind. Also, propose objective standard that could estimate the degree of manoeuvring difficulty, and conducted simulation experiment for this. we analyzed correlations between the subjective estimation which is described numerically the decreased dangerousness and the objective index which is related to the main parameter regarding manoeuvring by using this simulator from the result of conducting simulation experiment. And then we discussed the estimation technique of manoeuvring difficulty.

  • PDF

A Study on Evaluation Technique of Manoeuvring Difficulty by Using the Ship Manoeuvre Simulator for Berthing/Deberthing (선박 접이안 조종 시뮬레이터를 이용한 조종위험도 평가 기법에 관한 연구)

  • Yang Seung-Yeul;Sohn Kyoung-Ho;Lee Hee-Yong;Ha Mun-Keun;Kim Hyun-Soo;Lee Jin-Ho;Im Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.189-194
    • /
    • 2005
  • The berthing/deberthing manoeuvring operation is the peculiar work owned to the marine pilot and the dock master. So, in the port or the shipyard, the berthing/deberthing manoeuvring operation requires considerable concentration and bears dangerousness. In that situation, a tug utilization is getting increased and the external forces have an effect on the own ship because of moving with low advance speed. In this study, we constructed the 2-dimensional virtual ship manoeuvring simulator system with which we can carry out the berthing/deberthing manoeuvring operation by using tugs in the external forces such as strong wind. And then, we propose the objective indexes by which the degree of manoeuvring difficulty evaluated. Using the present system, we carry out manoeuvring simulation experiment in order to grasp correlation between the objective indexes proposed here and the def{ree of manoeuvring difficulty felt by operator. Lastly, we discuss the evaluation technique of manoeuvring difficulty.

Development of Collision Avoidance Supporting System based on ECDIS (전자해도표시시스템 기반의 충돌회피 지원 시스템 개발)

  • Kim, Da-Jung;Ahn, Kyoungsoo;Lee, Tae-Il;Kim, Young Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.167-170
    • /
    • 2013
  • The objective of this paper is to describe the result of development of collision avoidance supporting system, based on the electronic chart display and information system(ECDIS). In real ship operations, collision accidents happen frequently due to human errors such as the lax vigilance, misinterpretation of international regulations for preventing collisions at sea (COLREGs). We developed a system which will help to avoid these kind of accidents. This system can automatically recognize the risk of collisions, generate the safe alternative routes that comply with COLREGs, and then deliver the results into auto pilot. A virtual simulation assuming progressive collision situations revealed the usefulness of this system.

  • PDF

A Numerical Study on the Effects of Maneuverability of Ship with Low Forward Speed by Increasing Rudder Force (타력 증대가 저속 운항 선박의 조종성능에 미치는 영향에 관한 수치적 연구)

  • Kim, Hyun-Jun;Kim, Sang-Hyun;Kim, Dong-Young;Kim, In-Tae;Han, Ji-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.217-227
    • /
    • 2016
  • Recent accidents of crude oil tankers have resulted in sinking, grounding of vessels and significant levels of marine pollution. Therefore, International Maritime Organization (IMO) has been strengthening the regulations of ship maneuvering performance in MSC 137. The evaluation of maneuvering performance can be made at the early design stage; it can be investigated numerically or experimentally. The main objective of this paper was to investigate the maneuvering performance of a VLCC due to the increase of rudder force at an early design stage for low speed in shallow water conditions. It was simulated in various operating condition such as deep sea, shallow water, design speed and low speed by using the numerical maneuvering simulation model, developed using MMG maneuvering motion equation and KVLCC 2 (SIMMAN 2008 workshop). The effect of increasing the rudder force can be evaluated by using numerical simulation of turning test and ZIG-ZAG test. The research showed that, increasing the rudder force of a VLCC was more effective on improving the turning ability than improving the course changing ability especially. The improvement of turning ability by the rudder force increasing is most effective when the ship is sailing in shallow water at low forward speed.

Safe Speed Estimation of Arctic Ships considering Structural Safety (구조적 안전성을 고려한 빙해선박의 안전 운항속도 평가)

  • Nho, In Sik;Lim, Seung Jae;Kang, Kuk Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.236-242
    • /
    • 2018
  • Damage due to ice collision is the most serious threat for the structural safety of ships operating in arctic region. Since such hull damages are usually caused by the collision of floating ice at excessive voyage speed of ships, the authorities responsible for the shipping at arctic sea are required to provide the speed limit for safe voyage, so-called safe speed. In countries near arctic ocean, such as Canada and Russia, empirical methods to determine the safe speed of ships based on their long experience of arctic voyage have been established and applied them in the real arctic navigation. However, in Korea, it is not easy to accumulate the arctic voyage experience and related technical database, so it seems to be a realistic approach to adopt a safe voyage speed estimating method in arctic sea based on the ice collision simulation technology using the nonlinear finite element analysis. The aim of this study is to develop a technique for estimating the safe voyage speed of vessels operating at arctic sea through the ice collision analysis, In order to achieve this goal, the standard procedure of the ice collision analysis is dealt with and example analysis was carried out and the results were considered. To investigate the validity of developed method, POLARIS system proposed by IMO was studied for comparison.

A Study on the Application of Composites to Pipe Support Clamps for the Light-weight LNGC (LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구)

  • Bae, Kyong-Min;Yim, Yoon-Ji;Yoon, Sung-Won;Ha, Jong-Rok;Cho, Je-Hyoung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • In the shipbuilding and marine industry, as a technology for reducing the weight of parts to reduce energy and improve operational efficiency of ships is required, a method of applying fibers-reinforced composites which is high-strength lightweight materials, as part materials can be considered. In this study, the possibility of applying fibers-reinforced composites to the pipe support clamps was evaluated to reduce the weight of LNGC. The fibers-reinforced composites were manufactured using carbon fibers and glass fibers as reinforcing fibers. Through the computer simulation program, the properties of the reinforcing materials and the matrix materials of the composites were inversely calculated, and the performance prediction was performed according to the change in the properties of each fiber lamination pattern. In addition, the structural analysis of the clamps according to the thickness of the composites was performed through the finite element analysis program. As a result of the study, it was confirmed that attention is needed in selecting the thickness when applying the fibers-reinforced composites of the clamp for weight reduction. It is considered that it will be easy to change the shape of the structure and change the structure for weight reduction in future supplementary design.