• Title/Summary/Keyword: 선박운동제어시스템

Search Result 56, Processing Time 0.021 seconds

Control System Design for Marine Vessel Satisfying Mixed H2/H Performance Condition (H2/H 설계사양을 만족하는 선박운동제어계 설계에 관한 연구)

  • Kang, Chang-Nam;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.846-852
    • /
    • 2013
  • In this paper, the authors propose a new approach to control problem of the marine vessels which are moored or controlled by actuators. The vessel control problem in the specified area is called a DPS (Dynamic Positioning System). The main objective of this paper is to obtain more useful control design method for DPS. In this problem, a complicate fact is control allocation which is a numerical method for distributing the control signal to the controlled system. For this, many results have been given and verified by other researchers using two individual processes. It means that the controller design and control allocation design process are carried out individually. In this paper, the authors give more sophisticated design solution on this issue. In which the controller design and control allocation problem are unified by a robust controller design problem. In other word, the stability of the closed-loop system, control performance and allocation problem are unified by an LMI (Linear Matrix Inequality) constraint based on $H_2/H_{\infty}$ mixed design framework. The usefulness of proposed approach is verified by simulation with a supply vessel model and found works well.

Mooring Winch Control System Design Based on Frequency Dependent LQR Control Approach (주파수 의존형 LQR 설계법에 의한 무어링 윈치 제어시스템 설계)

  • Goo, Ja-Sam;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • In this paper, the author consider control system design problem of the surface vessel where any types of floating units are included. To keep their motion/position, the Dynamic Positioning System(DPS) is equipped in. Even though sometimes the thrust systems are installed on them, in general the mooring winch system with the rope/wire is used. Therefore, in this paper we consider a single type mooring winch control problem to keep the vessel's position. For this, we introduce an easy and useful control approach which is based on LQ control theory. In this approach, we introduce the frequency dependent weighting matrices which give the system filters to shape frequency characteristics of the controlled system and guarantee the control performance. Based on this, we will show that the proposed approach works well.

Development of a Framework for Evaluating Time Domain Performance of a Floating Offshore Structure with Dynamic Positioning System (동적위치유지시스템을 이용하는 부유식 해양구조물의 시간대역 성능평가를 위한 프레임워크의 개발)

  • Lee, Jaeyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.718-724
    • /
    • 2017
  • Considerable efforts have been made to expand the boundaries of domestic offshore plant industries, which have focused on the construction of the structures, to the engineering field. On the other hand, time domain analysis, which is one of the most important areas in designing floating offshore plants, relies mainly on the information given by foreign companies. As an early design of the Dynamic Positioning System (DPS) is mostly conducted by several specialized companies, domestic ship builders need to spend time and money to reflect the analysis into the hull shape design. This paper presents the framework required to analyze time domain performance of floating type offshore structures, which are equipped with DPS. To easily perform time domain analysis, framework generates the required input data for the solver, and is modularized to test the control algorithm and performance of a certain DPS. The effectiveness of the developed framework was verified by a simulation with a model ship and the total time for the entire analysis work was reduced by 50% or more.

Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control (3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발)

  • Lee, WonBu;Chang, Chulsoon;Kim, JeongKuk;Park, Soohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.627-630
    • /
    • 2009
  • The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device. The exact behavior will be used to make a essential equipment. Finally the development of the Nano Driving Multi Sensor, Nano of Surveillance System Driving Precision Pan-Tilt/Gimbal optimal design and production, 3-aix Gyro Sensor based with Servo Motion Control algorithm development, Image trace video software and hardware tracking the development is organized and discuss in details. The development of the equipment and the system integration are fully experimented and verified.

  • PDF

Development of seam tracking sensing system for welding environment with wall (벽이 있는 용접 환경을 위한 용접선 검출 시스템 개발)

  • Park, Young-Kyun;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • Both ends of welding line are often closed by wall in the welding of ship blocks. In this research, seam tracking sensing system for butt welding in the condition with wall was developed. Seam tracking sensing system measures position of carriage from wall and detects root-pass of welding line. The system consists of the laser displacement sensors and ultrasonic sensors. The laser displacement sensor reciprocal1y rotates by the motor and measures a distance from laser sensor to the welding material. The ultrasonic sensor measures a distance between welding system and walls. The distance measured by the ultrasonic sensor is used to get X(driving) position and to determine initial and end point of the weld line. Y(weaving) and Z(height) of the weld line are obtained by the distance measured by the laser displacement sensor and the orientation of the sensor. The sensing system includes the controller that is independent from the welding carriage. The seam tracking sensing system is attached to both side of welding carriage so that interference between welding torch and sensing system can be avoided during the welding. And both side sensing system minimize dead zone. Finally, developed sensing system was adhered to welding carriage and verified usefulness by experiments.

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Suppression of Radar Clutter by CFAR - (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 - CFAR에 의한 레이더 잡음 억제 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.347-357
    • /
    • 2003
  • This paper describes on the suppression of sea clutter on marine radar display using a cell-averaging CFAR(constant false alarm rate) technique, and on the analysis of radar echo signal data in relation to the estimation of ARPA functions and the detection of the shadow effect in clutter returns. The echo signal was measured using a X -band radar, that is located on the Pukyong National University, with a horizontal beamwidth of $$3.9^{\circ}$$, a vertical beamwidth of $20^{\circ}$, pulsewidth of $0.8 {\mu}s$ and a transmitted peak power of 4 ㎾ The suppression performance of sea clutter was investigated for the probability of false alarm between $l0-^0.25;and; 10^-1.0$. Also the performance of cell averaging CFAR was compared with that of ideal fixed threshold. The motion vectors and trajectory of ships was extracted and the shadow effect in clutter returns was analyzed. The results obtained are summarized as follows;1. The ARPA plotting results and motion vectors for acquired targets extracted by analyzing the echo signal data were displayed on the PC based radar system and the continuous trajectory of ships was tracked in real time. 2. To suppress the sea clutter under noisy environment, a cell averaging CFAR processor having total CFAR window of 47 samples(20+20 reference cells, 3+3 guard cells and the cell under test) was designed. On a particular data set acquired at Suyong Man, Busan, Korea, when the probability of false alarm applied to the designed cell averaging CFAR processor was 10$^{-0}$.75/ the suppression performance of radar clutter was significantly improved. The results obtained suggest that the designed cell averaging CFAR processor was very effective in uniform clutter environments. 3. It is concluded that the cell averaging CF AR may be able to give a considerable improvement in suppression performance of uniform sea clutter compared to the ideal fixed threshold. 4. The effective height of target, that was estimated by analyzing the shadow effect in clutter returns for a number of range bins behind the target as seen from the radar antenna, was approximately 1.2 m and the information for this height can be used to extract the shape parameter of tracked target..