MDCT의 딥러닝 재구성 기법(TrueFidelity, TF)의 유용성을 평가하고자 기존의 필터보정역투영법(Filtered back projection, FBP)과 적응형 통계적 재구성 기법(Adaptive Statistical Iterative Reconstruction-Veo, ASIR-V)의 화질을 비교 평가하였다. FBP, ASIR-V 50%, TF-H의 재구성 기법에서 선량을 17.29 mGy로 고정한 것과 10.37 mGy, 12.10 mGy, 13.83 mGy, 15.56 mGy로 변화시킨 영상을 획득하여 노이즈, CNR, SSIM을 측정하였다. 17.29 mGy에서 재구성 기법 변화를 주었을 때 TF-H가 FBP, ASIR-V에 비해 화질이 우수하다. 선량에 변화를 주었을 때 10.37 mGy TF-H와 FBP 비교 시 노이즈, CNR, SSIM은 유의한 차이가 있고(p<0.05), 10.37 mGy TF-H와 ASIR-V 50% 비교 시 유의한 차이가 없다(p>0.05). 선량이 가장 높은 15.56 mGy ASIR-V 50%와 선량이 가장 낮은 10.37 mGy TF-H 화질이 동일하므로 TF-H는 30%의 선량 감소 효과가 있다. 따라서 딥러닝 재구성 기법(TF)은 반복적 재구성 기법(ASIR-V)과 필터보정역투영법(FBP)보다 선량을 감소시킬 수 있었다. 이로 인해 환자의 피폭선량을 감소시킬 것으로 사료된다.
CT(Computed Tomography)영상에서 선량과 화질은 중요한 요소이다. 선량은 환자에게 직접적으로 악영향을 끼치는 요소이며, 화질은 환자의 병변을 판단하는데 매우 중요하게 작용한다. 반복적 재구성 알고리즘을 이용하면 저선량 영상에서도 고화질의 영상을 얻을 수 있는지 FBP와 정량적, 정성적으로 비교하였다. 촬영 프로토콜은 관전압 80, 100, 120kVp에서 관전류를 동일하게 200mA로 촬영하여 획득하였으며, 정량적 평가를 위해 SD(Standard Deviation), SNR(Signal to Noise Ratio), MTF(Modulation Transfer Function)를 측정하여 분석하였다. 선량은 80kVp일 때 가장 낮았으며, 120kVp일 때 가장 높았다. 80kVp의 영상을 Toshiba 사(社)의 AIDR 3D(Adaptive Iterative Reduction integrated into $^{SURE}Exposure$)로 재구성하고, 120kVp의 영상에 FBP로 재구성한 다음 정량적 비교를 한 결과 AIDR 3D를 적용한 영상의 SD가 낮게 나왔으며, SNR이 높게 나타났고, MTF 곡선은 유사하게 나타났다. 그리고 FWHM(Full Width at Half Maximum) 값의 오차가 거의 없었다. 결론적으로 AIDR 3D는 저선량에서도 높은 화질을 나타냄을 확인하였다.
본 연구는 선형 가속기에서 나오는 고 에너지 광자빔 조사를 받은 환자 내부의 선량 분포를 조사문 선량 분포로부터 재구성하는 방법을 개발하기 위한 기초 연구로서 삼차원 선량 분포를 재구성하는 방법을 제시하고 이 방법을 전산모사를 통해 평가하였다. 본 연구에서 제안하는 방법은 환자나 팬톰 내부의 임의의 지점에서 흡수된 선량과 그 지점에 대응되는 조사문 선량의 측정 지점에서 흡수된 선량의 차이를 계산하여 측정된 조사문 선량 분포로부터 환자나 팬톰 내부의 선량분포를 얻는 것이다. 선량의 차이는 역제곱법칙과 선형감쇄계수, 그리고 Monte Carlo 프로그램을 이용하여 환자나 팬톰의 CT 정보로부터 계산한 산란선량과 주선량의 비(scatter to primary dose ratio)를 이용하여 계산한다. 이 방법을 시험하기 위해 여러 종류의 균질 혹은 비균질 팬톰의 조사문 선량 분포를 Monte Carlo 전산모사로 계산한 뒤 팬톰 내부의 선량 분포를 재구성하였다. 광자빔은 1.5 MeV의 단일에너지를 사용하였고 Monte Carlo 프로그램은 EGS4를사용하였다. 본 연구의 방법을 사용하여 재구성된 팬톰 내부의 선량 분포와 Monte Carlo로 계산한 팬텀 내부의 선량 분포와 비교하였다. 비교 결과 오차 -4%∼+2% 이내로 일치하였다. 이 방법은 다른 in vivo dosimetry 방법을 대신하여 환자내의 선량분포를 예측하는데 쓰여질 수 있을 것이다.
본 논문에서는 반복적 구성 기법과 관전류 노출자동조절 기법이 영상의 화질과 방사선량에 미치는 영향을 관상동맥 전산화단층촬영 혈관조영 영상(coronary computed tomography angiography, CCTA)을 대상으로 팬텀 실험에 기반하여 평가하고자 한다. 이를 위하여 미국 의학물리학회(American Association of Physics in Medicine) 표준의 성능 평가 팬텀을 320 다중검출열 CT로써 촬영하였다. 80 kVp, 100 kVp, 120 kVp의 관전압에 있어서, 관전류 노출자동조절 기법은 저선량 목표 표준편차(SD=44)와 고선량(목표 표준편차=33)의 두 가지 설정으로써 촬영하였다. 재구성 변수로서는 필터보정 역투영(FBP)와 반복적 재구성 방법을 설정하여, 전부 12개의 재구성 영상을 획득하였다(12=3 (80, 100, 120 kVp)${\times}2$ (저선량(목표SD=44), 고선량(목표SD=33))${\times}2$ (필터보정역투영, 반복적 재구성). 영상의 화질은 잡음의 세기(표준편차), 변조전달함수, 대조대잡음비(CNR)에 의하여 평가하였으며, 관전압과 관전류 노출자동조절 기법에서의 목표 선량과 대소 및 재구성 기법의 선택이 화질과 방사선량에 미치는 영향을 관찰하였다. 반복적 재구성 기법은 필터보정역투영 기법보다 영상 잡음을 대폭 감소시켰으며 이는 저선량의 경우 더욱 뚜렷하였다. 즉, 잡음의 세기는 관전류 노출자동조절의 설정이 고선량 (목표SD=33)과 저선량(목표SD=44)인 경우, 각각 평균 38%와 평균 46% 감소하였다. 반복적 재구성 기법에 의하여, 변조전달 함수에 의한 공간적 해상도의 평가에 있어서 미약한 감소를 보였으나, 이로써 잡음 저감과 대조대잡음비(CNR)에 있어서의 현저한 개선을 상쇄할 정도의 영향에는 미치지 못 하였다. 결과적으로, 관상동맥 전산화단층촬영 혈관조영 영상의 획득에서 있어서, 반복적 재구성 기법과 관전류 노출자동조정 기법을 동시에 사용하는 것은 영상의 화질을 개선하면서 공간적 해상도의 저하 등 그 부작용은 최소화함으로써, 합리적으로 획득 가능한 한 최소한의 선량 (ALARA)의 원칙에 충실한 실제 임상적 효과를 의미한다고 기대할 수 있다.
Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
한국의학물리학회지:의학물리
/
제25권3호
/
pp.139-142
/
2014
본 연구의 목적은 흡수선량 재구성, 방사선 치료간의 재구성된 선량의 등록, 선량-체적 히스토그램의 생산등을 수행하는 선량 재구성의 임상적 응용시스템을 만들고 그것을 변형된 전립선 팬텀에 적용하는 것이다. 이를 위해 변형가능한 전립선 팬텀을 20 cm 깊이와 40 cm너비의 물팬텀에 집에 넣었다. 이것의 영상을 얻고, 전립선, 정낭 및 항문의 윤곽을 그렸다. 동일 평면에서 네개의 조사문을 이용하여 세기 변조계획을 세웠다.항문에 20 ml의 물풍선을 삽입하여 장기를 변형시켰다. 영상을 다시 획득하여 위 장기의 윤곽을 그렸다. XVMC몬테칼로 코드를 사용하여 두 팬텀및 EPID내에서 선량반응 인자를 계산하였다. 세기변조계획에서 얻어진 방사선을 두팬텀에 조사하여 EPID에서 적분형 영상을 얻었다. Demons 방법을 사용하여 변형된 팬텀을 변형전 팬텀에 등록시켰다. 이를 통해 단위체적별 위치변이 정보를 얻었고 이를 이용해 두 팬텀의 재 구성된 선량을 합하여 변형전 팬텀에 생산해 냈다. 순방향으로 계산된 치료계획 선량을 합산된 재구성된 선량과 비교하였다. 200 cGy에서 전립선과 정낭이 받든 체적은 차이를 거의 보이지 않았으나, 210 cGy 이상에서는 3%가량 차이를 보였다. 항문에서는 150-200 cGy영역에서 재구성된 선량에 의하여 받은 체적은 치료 계획과 비교하여 3% 이상 적었다. 본 연구를 통하여 선량 재구성의 임상적 응용시스템이 성공적으로 만들어 졌다. 변형된 전립선 팬텀에 적용되어 작지 않은 선량의 차이를 목표장기와 보호 장기에 보였다.
목적 : 본 연구에서는 C-arm과 CT에 사용 가능한 자궁경부암용 팬톰을 개발하고 이를 이용하여 기존의 필름 방법에 기반한 위치 확인 방법과 CT 재구성 방법의 정확성을 비교 연구하고자 한다. 정확성이 검증된 후에는 두 방법의 장점을 이용하기 위해 CT로 재구성된 좌표를 필름의 좌표로 변환시켜 현재 사용되고 있는 필름에 기반한 근접 치료 계획 시행에 도움을 주고자 한다. 방법 : 자체 제작한 자궁경부암용 팬톰은 인체 등가 물질인 물과 아크릴을 사용하였고, 크게 localizer 부분과 팬톰 부분으로 구성되어 있다. 또한, 실제 자궁경부암 환자의 임상적인 구조를 모사하여 제작하였다. 자궁경부암 치료시 중요 장기인 방광과 직장을 구와 원기둥으로 설계하였고, 고선량율 applicator는 아크릴 판의 흠으로 고정시켜 제작하였기 때문에 CT 촬영시 applicator를 제거한 영상에서도 applicator의 구조가 정확하게 묘사될 수 있도록 제작하였다. 두 시스템에서 재구성된 좌표를 비교하기 위해 각각의 시스템에서의 얻은 재구성 좌표와 팬톰 자체의 localizer와 재구성 알고리즘을 바탕으로 개발된 프로그램을 이용하여 얻은 좌표로 두 재구성 좌표의 비교 연구를 수행하였다. 정확성이 검증되고 장기의 정보가 담긴 CT의 좌표는 자체 개발된 프로그램으로 2 차원의 필름 좌표로 변환되었다. 본 연구에 사용된 모든 프로그램은 ILD 5.5를 사용하여 개발되었다. 결과 : 두 시스템의 좌표 비교 결과 x, y 축은 차이가 2mm 이내로 비교적 정확한 실험 결과를 얻을 수 있었고, z 축의 경우 CT 슬라이드의 굵기에 따라 2mm-3mm 이내의 차이가 있음을 관찰할 수 있었다. z 축을 제외한 좌표의 차이는 획득한 영상에서 컴퓨터로 좌표를 옮기는 localizer 좌표 선택 과정에 발생했을 것으로 예상된다. 또한, 이 검증된 좌표와 개발된 프로그램을 이용하여 우리는 CT의 좌표를 2차원의 필름 좌표로 정확하게 변환할 수 있었다. 결론 : 이 연구로부터 기존의 C-arm 재구성 방법과 CT 재구성 방법의 비교를 통해 각 치료 기기의 신뢰성을 직접 확인할 수 있었으며, 비교를 통해 검증된 CT의 좌표를 필름 좌표로 변환시킴으로서, 각 시스템의 장점만을 결합한 효과적인 치료 계획을 세울 수 있는 가능성을 제시하였다. 또한 물과 아크릴을 사용한 비교적 간단하고 경제적인 방법으로 C-arm, CT 그리고 MRI에 모두 이용 가능한 팬톰을 제작하여 쉽고 정확하게 위치를 확인할 수 있었다. 더 나아가, 본 연구에서 제작된 자궁경부암 팬톰은 근접치료를 포함하여 관련 팬톰 개발에 도움을 줄 수 있을 것으로 예상된다.
최근 복부 CT 검사 건수가 증가하고 있으며 이에 피폭선량을 감소시키기 위해 많은 노력이 요구되고 있다. 최근 도입된 반복적 재구성기법(Iterative Reconstruction, IR)을 복부 CT검사에 적용하여 기존 필터 보정 역투영법(Filtered Back Projection, FBP)과 화질 및 선량을 비교평가하여 유용성을 알아보고자 하였다. 반복적 재구성기법은 SIEMENS사의 ADMIRE, GE사의 ASIR-V를 이용하였고 화질평가를 위해 ACR phantom 영상을 이용하여 Noise, % Contrast, High contrast resolution를 측정하였다. 또한 선량평가는 CT장치에서 표시되는 CTDIvol, DLP를 이용하였다. 필터 보정 역투영법과 반복적 재구성기법을 비교 평가한 결과 반복적 재구성기법 ADMIRE 2~5단계, ASIR-V 30, 50, 70, 90%를 적용한 경우, Noise가 ADMIRE에서 0.46~2.38, ASIR-V에서 0.51~2.5 감소하였다. % Contrast, High contrast resolution 유의한 차이가 없었다. 선량의 경우 반복적 재구성기법을 사용할 경우 ADMIRE에서 25.39%, ASIR-V에서 16.61% 감소시킬 수 있음을 알 수 있었다. 결론적으로 복부 CT검사 시 반복적 재구성기법을 적용한다면 화질을 유지함과 동시에 선량을 감소시킬 수 있을 것이라 사료된다.
본 연구에서는 콘빔 단층촬영영상(cone beam CT; CBCT) 및 다엽 콜리메이터(multileaf collimator;MLC) 로그데이터를 이용한 적응형 방사선치료기법의 체계를 구축하고, 그 과정에서의 선량 계산 오차의 양상을 팬텀을 이용하여 분석하고자 하였다. Catphan-600 (The Phantom Laboratory, USA) 팬텀을 CT와 CBCT 촬영 후 CT 영상을 이용하여 간단한 단계별조사(step-and-shoot) 방식의 세기조절방사선치료(intensity-modulated radiation therapy; IMRT) 계획을 수립하였다. 이후 빔전달 시 생성된 MLC 로그데이터(Dynalog)를 이용하여 실제 전달된 세그먼트 별 모니터단위(MU) 가중치와 MLC 엽(leaf)의 위치를 구한 후 이를 다시 Pinnacle3에 넣고 선량을 재계산하였다. 초기 치료 계획은 치료 계획용 CT 영상($CT_{plan}$) 및 CBCT 영상($CBCT_{plan}$)에 대하여 계산되었으며, 재구성된 선량 역시 치료 계획용 CT 영상($CT_{recon}$) 및 CBCT 영상($CBCT_{recon}$)에 대하여 계산되었다. 각 선량 계산을 $CT_{plan}$을 기준으로 하여 2차원 선량분포, 감마 인덱스, 선량-부피 히스토그램(dose-volume histogram; DVH)을 이용하여 분석하였다. 2차원 선량분포 및 DVH 분석 모두에서 원래의 치료 계획보다 실제 전달된 선량이 다소 많은 것으로 나타났으나 임상적인 의미는 미미했다. 감마 인덱스의 경우 CBCT에 선량을 계산했을 때 치료 계획 정보나 재구성된 선량 정보를 이용한 경우 모두 오차가 크게 발생했다. 재구성된 선량은 빔의 경계 부분에서 오차가 크게 발생하였으나 그 영향은 CT 및 CBCT 영상 간 차이에 의한 것보다 작았다. CBCT 영상에 전달된 선량을 재구성하게 되면 두 영향이 복합적으로 작용하여 오차는 더 줄어들게 되지만 $CT_{plan}$과 $CBCT_{plan}$의 차이에 비하여 $CBCT_{plan}$과 $CBCT_{recon}$ 차이는 상대적으로 작아 전달된 선량의 오차를 평가할 때 불확실성이 커졌다. 그러므로 선량 계산 오차의 양상은 셋업 오차, CBCT 영상을 이용한 선량 계산 오차 및 재구성된 선량 계산의 오차로 나누어 분석될 필요가 있을 것이다.
본 연구의 목적은 electronic portal imaging device (EPID)를 통하여 방사선 치료를 받는 환자로부터 투과해 나오는 선량으로 외부적인 선량 재구성과 몬테카를로 전산모사로부터 도출되는 내부 선량 계측과의 관계를 도출하고 이를 분석하기 위한 연구로 진행되었다. 본 연구는 전산모사 연구로써 두 가지의 경우를 비교 분석하고 이와 비슷한 연구에 대한 기본적인 지표를 제공하고자 시행되었다. 실험에 관한 기하학적 정보와 방사선 소스에 대한 정보를 몬테카를로 전산모사 툴인 Monte Carlo n-particle (MCNPX)에 입력하였고 EPID 이미지 도출을 위하여 MCNPX 내에 tally카드를 이용하여 선량정보를 도출하고 이를 영상화 할 수 있도록 하였다. 또한 내부적인 계측을 위하여 물 팬텀을 소스와 표면의 거리(source to surface distance, SSD)가 100 cm이 되도록 설정하였으며, 그보다 10 cm 아래에 EPID를 위치시켰다. 내부 계측은 물팬텀 자체에서 흡수되는 흡수 선량을 mesh tally로 수집하였고, 4문 조사를 통하여 중첩된 선량에 대한 데이터를 획득하였다. 그와 동시에 EPID에서 물을 투과해 나오는 선량을 획득 한 뒤 역 투사 방법을 사용하여 선량 재구성을 하였다. 이둘의 경우를 비교하기 위해 자체적인 교정(calibration)을 통하여 투과해 나온 선량과 흡수된 선량과의 관계를 비교하고 4문 조사를 통하여 물 팬텀 내의 특정 부분에 대한 중첩된 선량 데이터와 EPID를 통해 재구성한 선량 데이터를 분석하였다. 물 팬텀과 EPID에서 획득한 누적 선량의 합은 각각 평균 3.4580 MeV/g과 3.4354 MeV/g이었다. 이는 앞서 계측된 물 팬텀 내부의 누적 선량과 0.6536% 선량 오차를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.