• Title/Summary/Keyword: 선량크리프

Search Result 4, Processing Time 0.018 seconds

The Necessity of Resetting the Filter Criteria for the Minimization of Dose Creep in Digital Imaging Systems (디지털 영상 시스템에서 선량 크리프 최소화를 위한 부가 필터 두께 권고 기준의 재설정에 대한 연구)

  • Kim, Kyo Tae;Kim, Kum Bae;Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.757-763
    • /
    • 2019
  • Recently, Following the recent development of flat panel detector with wide dynamic ranges, increasing numbers of healthcare providers have begun to use digital radiography. As a result, filter thickness standards should be reestablished, as current clinical practice requires the use of thicknesses recommended by the National Council on Radiation Protection and Measurements, which are based on information, acquired using conventional analog systems. Here we investigated the possibility of minimizing dose creep and optimizing patient dose using Al filters in digital radiography. The use of thicker Al filters resulted in a maximum 19.3% reduction in the entrance skin exposure dose when medical images with similar sharpness values were compared. However, resolution, which is a critical factor in imaging, had a significant change of 1.01 lp/mm. This change in resolution is thought to be due to the increased amount of scattered rays generated from the object due to the X-ray beam hardening effect. The increase in the number of scattered rays was verified using the scattering degradation factor. However, the FPD, which has recently been developed and is widely used in various areas, has greater response to radiation than analog devices and has a wide dynamic range. Therefore, the FPD is expected to maintain an appropriate level of resolution corresponding to the increase in the scattered-ray content ratio, which depends on filter thickness. Use of the FPD is also expected to minimize dose creep by reducing the exposure dose.

A Study on the Development of High-sensitivity AEC-sensor for Minimization of Dose Creep in Diagnostic Imaging System (진단영상 시스템에서 선량크리프 현상의 최소화를 위한 고감도 AEC 센서에 관한 연구)

  • Kim, Kyo-Tae;Han, Moo-Jae;Heo, Ye-Ji;Kim, Joo-Hee;Kang, Sang-Sik;Park, Ji-Koon;Nam, Sang-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.321-325
    • /
    • 2016
  • Dose creep is one of clinical errors that arises from the tester's inexperience or carelessness, and according to Task Group #116 of American Association of Physicists in Medicine, its continued occurrence is being reported in the digital method. At this point, the demand for an automatic exposure control device that minimizes the dose creep phenomenon and can improve reproducibility is increasing. In this study is to consider the automatic exposure control device sensor that can is not only easy to produce, but also reduce the dose creep phenomenon by conducting a research on high-efficient semiconductor sensor. As a result, the Intrinsic-type and PIN-type sensors have excellent optical property compared to Ref sensor, would have less shading effect, and have relatively low sensitivity, but would provide accurate feedback signals to automatic exposure control device with its consistent tendency according to exposure condition changes.

The Study of Affecting Image Quality according to forward Scattering Dose used Additional Filter in Diagnostic Imaging System (부가필터 사용 시 전방 산란선량에 따른 화질 영향에 대한 연구)

  • Choi, Il-Hong;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Hyong-Hu;Kang, Sang-Sik;Noh, Si-Cheol;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • Recent clinical field utilizes the aluminium filter in order to reduce the low-energy photons. However, the usage of the filter can cause adverse effect on the image quality because of the scattered dose that is generated by X-ray hardening phenomenon. Further, usage of filter with improper thickness can be a reason of dose creep phenomenon where unnecessary exposure is generated towards the patient. In this study, the author evaluated the RMS and the RSD analysis in order to have a quantitative evaluation for the effect of forward scattering dose by the filter on the image. as a result of the study, the FSR and the RSD was increased together with the increasing of thickness of the filter. In this study the RSD means the standard deviation of the mean value is relatively size. It can be understood that the signal-to-noise ratio decreases when the average value is taken as a signal and the standard deviation is judged as a noise. The signal-to-noise ratio can understanding as index of resolution at image. Based on these findings, it was quantitatively verified that there is a correlation of the image quality with the FSR by using an additional filter. The results, a 2.5 mmAl which is as recommended by NCRP in the tube voltage of 70 kVp or more showed the 14.6% on the RSD when the filter was not in used. these results are considered able to be utilized as basic data for the study about the filter to improve the quality of the image.

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film (전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구)

  • Park, Jung-Jin;Choi, Hong-June;Ko, Hwan-Soon;Jeong, Eun-Hwan;Youk, Ji-Ho
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.