• Title/Summary/Keyword: 선량지표

Search Result 139, Processing Time 0.021 seconds

Comparison of Beam Quality Index of High Photon Beam (고에너지 광자선의 선질 지표에 관한 비교)

  • 신동오;지영훈;박성용;박현주;김회남;홍성언;권수일;서태석;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.185-192
    • /
    • 1998
  • It is necessarily to evaluate the energy of X-ray emitted from linear accelerator in order to determine the accurate absorbed dose. The method of direct measurement for x-ray energy is very difficult and impractical. Therefore the method of using beam quality index is generally used. Several dosimetry protocols recommend the use of quality indices such as depth of dose maximum at radiation central axis, dose gradient, and dose level. The linear accelerator manufactures follow the recommendation as dosimetry protocols. The study was performed for us to select the most suitable parameter among the Quality indices as described above. For photon beams of 4, 6, 10, 15, and 21 MV nominal energies produced by four kinds of accelerators(Mitsubishi, Scanditronix, Siemens, Varian) in eleven institutions, We evaluated the x-ray energies obtained by the Quality indices as recommended by several dosimetry protocols and manufactures. Results showed that there were energy spreads according to the same accelerators and Quality indices even though nominal energies were same. It appeared that the percent depth dose at 10 cm (D$_{10}$(%)) gave the smallest deviation and spread of energies. As energies increased, the energy deviation increased for all the quality indices. It is desirable for the use of unified quality index to compare the evaluation of beam quality at different institutions.

  • PDF

Analysis and Evaluation of Computed Tomography Dose Index (CTDI) of Pediatric Brain by Hospital Size (병원규모별 소아 두부 CT 검사 선량지표 분석 평가)

  • Kim, Hyeonjin;Lee, Hyoyeong;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.503-510
    • /
    • 2016
  • Even though children are exposed to the same amount of radiation, their effective dose amount is higher than those of adults. Therefore, it is very important to reduce the amount of unnecessary radiation exposure because children have a higher radiosensitivity and a smaller body size than adults. In this study, the proposal to seek ways to reduce the amount of radiation is drawn by comparing and analyzing CT Dose Index(CTDI) on the pediatric head CT which was performed at the Busan regional hospitals, to the national diagnostic reference levels. For this, the pediatric head CT scan was conducted among the CT equipments that were installed in downtown Busan. From 2,043 children 10 years old or less who were referred to the pediatric head CT scan, targeting the 28 CT equipments in the 24 hospitals that transmit dose reports to PACS, were examined retrospectively. As a result, the average value of CTDIvol, computed tomography dose index (CTDI) of infant brain, across the hospital, was 31.18 mGy, with DLP of $444.73mGy{\cdot}cm$, which exceeded the diagnostic reference level. The lower the age, the more management is needed for radiation. However, the reality is that the CT examinations are being conducted with a dose that exceeds the reference level as the age of the aged is exceeded. For this purpose, the study seeks to determine the degree of doses of doses outside the diagnostic reference level and analyze the cause of the excess dose and devise measures to reduce the dose reduction.

Importance Analysis of Radiological Exposure by Ground Deposition in Potential Accident Consequences for the Licensing Approval of a Nuclear Power Plant (원전 인허가승인을 위한 사고결말평가에서 지표침적에 의한 피폭의 민감도 분석)

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • In potential accident consequence assessments for the licensing approval of LWRs, the ground deposition of radionuclides released into the environment is not allowed into the models, as recommended in the U. S. Nuclear Regulatory Commission's regulatory guide. Meanwhile, it is allowed into the assessment models for the licensing approval of PHWRs with consideration of more detailed physical processes of radionuclides in the atmosphere. Under these backgrounds, importance of exposure dose by ground deposition was quantitatively evaluated and comprehensively discussed. For potential accidental releases of $^{137}Cs$ and $^{131}I$, total exposure doses were more conservative in case of without consideration of ground deposition than in case of with its consideration. It was because of that the depletion of air concentration resulting from ground deposition is more influential in the contribution to total exposure doses than additional doses from contaminated ground. The exposure doses by the inhalation of contaminated air showed the contribution of more than 90% in total exposure doses, depending on atmospheric stability, release period of radionuclides and distance from a release point. The exposure doses from contaminated ground showed less than 10% at most in contribution of total exposure doses. The ratios of total exposure doses in case of with consideration of deposition to without its consideration for $^{131}I$ were distinct than those for $^{137}Cs$. As the atmosphere is more stable, release duration of radionuclides is longer, distance from a release point is longer, it was more distinct.

Analyzed the Computed Tomography Dose Index (CTDI) to the Pediatric Brain CT by Reason of the Observation for the Exposure Dose: Base on a Hospital (소아 두부 전산화단층촬영 선량지표 분석을 통한 피폭선량 모니터링: 일개병원 사례 중심으로)

  • Lee, Jae-Seung;Kim, Hyun-Jin;Im, In-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.290-296
    • /
    • 2015
  • The purpose of this study was to derive the proposals and to suggest the exposure dose reduction scheme on pediatric head CT scan by analyzing and comparing CT dose index (CTDI) and the national diagnostic reference levels. From January 2014 to December, 231 children under 10years who were requested a pediatric head CT scan with head injury were examined. Research methods were to research and analyze the general characteristics kVp, mA test coverage $CTDI_{vol}$ and DLP referring to dose reports and electronic medical record (EMR). As a result, 7.4%(17 patients) of the total subjects in $CTDI_{vol}$ showed a national diagnostic reference levels exceeding. For DLP 41.6%(96 patients) in excess was relatively higher than $CTDI_{vol}$. DLP was exceeded more than about 60% that is higher than the CT dose index presented by Korea Food & Drug Administration. it is cause of high DLP that scan range increased more than about 30% wider than the standard test coverage presented in Health Insurance Review & Assessment Service. In conclusion, it is able to significantly lower the dose if it is complied with checking the baseline scan range of pediatric head CT scan and appropriately adjusting the protocol.

The Review of Exposure Index in Digital Radiography and Image Quality (디지털 영상에서 화질관리에 관한 노출지수(EI)의 유용성 연구)

  • Yang, Sook;Han, Jae Bok;Choi, Nam Gil;Lee, Seong Gil
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The aim of this study was to determine the correlation between exposure index (EI) and dose factors related to radiation dose optimization in digital radiography (DR) system. Two phantoms with built-in regional test object for quantitative assessment of images were used to produce image signals that acquired in chest radiography background. EI and entrane surface dose (ESD) increased proportionally with rise of radiation dose (kVp, mAs) in both DR and CR systems. Especially, DR detector was effective to form good contrast and hence, reached easily to improvement of image quality with minimal dose changes. It made operators possible to expect the accuracy of EI values deeply related to absorbed dose of the detector. The evaluation of images was obtained specially employed calculation of noise to signal ratio (NSR) and contrast to noise ratio (CNR). These measurements were performed for how exposure factors affect image quality. NSR was inversely proportional to kVp and mAs and low NSR represented high signal detection efficiency. Consequently, EI values was the measure of the amount of exposure received by the image receptor and it was proportional to exposure factors. Therefore the EI in a recommended range from manufacturer can offer optimal image quality. Also, continuous monitoring of EI values in the digital radiography can reduce the unnecessary patient dose and help the quality control of the system.

Cytokinesis-blocked micronuclei in the human peripheral lymphocytes following low dose γ-rays irradiation (저선량의 감마선 피폭된 사람 말초 임파구의 미소핵을 이용한 방사선 생물학적 피폭선량 측정법 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 2001
  • To determine if micronucleus (MN) assay could be used to predict the absorbed dose of victims after accidental radiation exposure, we carried out to assess the absorbed dose depending on the numerical changes of MN in human peripheral blood lymphocytes after $^{60}Co\;{\gamma}-rays$ exposure in the range of 0.25 to 1 Gy, respectively. The MNs were observed at very low doses, and the numerical changes according to doses. Satisfactory dose-effect calibration curve is observed after low dose irradiation of human lymphocytes in vitro. When plotting on a linear scale against radiation dose, the line of best fit was $Y=(0.02{\pm}0.0009)+(0.033{\pm}0.010)D+(0.012{\pm}0.012)D^2$. The dose-response curve for MN induction immediately after irradiation was linear-quadratic and has a significant relationship between the frequencies of MN and dose. These data show a trend towards increase of the numbers of MN with increasing dose. The number of MN in lymphocytes that were observed in the control group is $0.1610{\pm}0.0093/cell$. Accordingly, MN assay in human peripheral lymphocytes could be a useful in viva model for studying radio-protective drug sensitivity or screening test, microdosimertic indicator and radiation-induced target organ injury. Since MN assay is simple, rapid and reproducible, it will also be a biodosimetric indicator for individual dose assessment after accidental exposure.

  • PDF

Evaluation of Terrestrial Gamma Radiation and Dose Rate of the Ogcheon Group Area (옥천층군 일대의 지표방사능과 감마선량 평가)

  • Yun, Uk;Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.577-588
    • /
    • 2020
  • We evaluated the distributions of primordial radionuclides and effective dose rate of the Ogcheon Group, which includes rocks with high uranium content. Terrestrial gamma radiation was measured at 421 points using a portable gamma ray spectrometer. Dividing the study area into five geological units (og1, og2, og3, og4, and igneous rocks) revealed no significant difference in the concentration of surface radioactivity among the types. The concentrations of 40K, eU, and eTh for all samples ranged from 0.7% to 10.3% (average 5.2%), 0.6 to 287.0 ppm (average 8.5 ppm), and 4.0 to 102.4 ppm (average 31.3 ppm), respectively. The absorbed dose rate in the study area (calculated from the activity concentrations of 40K, eU, and eTh) was in the range of 28.84 to 1,714.5 nGy/h (average 195.4 nGy/h). Among the five geological units, the lowest average was 166.3 nGy/h (for og1) and the highest average was 233.3 nGy/h (for og2; median 198.1 nGy/h). The outdoor effective dose rate for the area obtained from the absorbed dose rate was in the range of 0.04 to 2.10 mSv/y (average 0.24 mSv/y). Except for the four sites located in the uranium-bearing coal bed of og2, none of the studied sites exceeded 1 mSv/y.

Basic Principles of CT Dose Index and Understanding of CT Parameter for Dose Reduction Technique (CT선량지표의 원리와 선량감소 방안에 관한 연구)

  • Kim, Jung-Su;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Computed tomography(CT) using radiation have potential risks. All medical radiographic examinations should require the justification of medical imaging examinations and optimization of the image quality and radiation exposure. The CT examination was higher radiation dose then general radiography. Especially pediatric CT examinations need to great caution of radiation risk. Because of pediatric patient was more sensitive of radiation exposure. Therefore, physician should consider the knowledge of CT radiation exposure indicator information for reduce a needless radiation exposure. This article was aim to understanding of CT exposure indicator, size-specific dose estimates by American Association of Physicists in Medicine (AAPM) report 204, XR 25 and understanding of CT dose reduction technique.

Measurement of Environmental Radiation according to Altitude above Sea Level in National Park (국립공원의 해발고도에 따른 환경방사선 측정)

  • Ji, Tae-Jeong;Lee, In-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.694-701
    • /
    • 2012
  • This study set put to measure the environmental radiation for mountainous regions of National Parks where Integrated Environmental Radiation Monitoring Network is not installed. For the measurement method, the space dose was classified at 1 meter high from the surface and the index dose at the surface. The measured radiation energy measured gamma, alpha and beta rays. For selection of national parks, we selected 10 national parks which are within the same distribution in the southern part and central part of the nation. For measurement equipment, INTERCEPTOR$^{TM}$(Thermo, USA, 2006) was used for gamma rays. As for the results of the measurements, for the space gamma dose, a high level was measured at a sea level of 500 meter in national parks with an altitude of less than 1,000 meter. It was found that the value was more than $0.23{\mu}Svh^{-1}$ especially in Bukhan Mountain, Gyeryong Mountain and Wolchul Mountain. In national parks with an altitude of more than 1,000 meter, $1.77{\mu}Svh^{-1}$ was measured at 1,500 meter at Seorak Mountain. Therefore, this is 10 times greater than the background standard dose. The national parks were there were no significant changes in dose were Naejang Mountain, Sobaek and Jiri Mountains. For the measurement of the index dose, a high dose level was measured at middle altitudes of 500 meter and 1,000 meter. For measurement according to the composition types of crust, high doses were recorded at national parks composed of rocks and a lower environmental radiation level was measured at Hanra Mountain where volcanic activities have occurred.

Mouse model system based on apoptosis induction to crypt cells after exposure to ionizing radiation (방사선에 전신 조사된 마우스 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-Hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.571-578
    • /
    • 2001
  • To evaluate if the apoptotic fragment assay could be used to estimate the dose prediction after radiation exposure, we examined apoptotic mouse crypt cells per 1,000 cells after whole body $^{60}Co$ $\gamma$-rays and 50MeV ($p{\rightarrow}Be^+$) cyclotron fast neutron irradiation in the range of 0.25 to 1 Gy, respectively. The incidence of apoptotic cell death rose steeply at very low doses up to 1 Gy, and radiation at all doses tigger rapid changes in crypt cells in stem cell region. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for the data of apoptotic fragments was obtained by the linear-quadratic model $y=0.18+(9.728{\pm}0.887)D+(-4.727{\pm}1.033)D^2$ ($r^2=0.984$) after $\gamma$-rays irradiation, while $y=0.18+(5.125{\pm}0.601)D+(-2.652{\pm}0.7000)D^2$ ($r^2=0.970$) after neutrons in mice. The dose-response curves were linear-quadratic, and a significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic crypt cells with increasing dose. Both the time course and the radiation dose-response curve for high and low linear energy transfer (LET) radiation modalities were similar. The relative biological effectiveness (RBE) value for crypt cells was 2.072. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morpholoigcal findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis in crypt cells could be a useful in vivo model for studying radio-protective drug sensitivity or screening test, microdosimetric indicator and radiation-induced target organ injury. Since the apoptotic fragment assay is simple, rapid and reproducible in the range of 0.25 to 1 Gy, it will also be a good tool for evaluating the dose response of radiation-induced organ damage in vivo and provide a potentially valuable biodosimetry for the early dose prediction after accidental exposure.

  • PDF