• Title/Summary/Keyword: 선량분포 및 선량평가

Search Result 228, Processing Time 0.026 seconds

An Experimental Study on the Effectiveness of Microwave Hyperthermia Combined with Radiation on the Small and Large Intestine in rats (흰쥐의 장조직에 X-선 조사와 마이크로파 온열요법의 효과에 관한 실험적 연구)

  • Ahn, Kyung-Sook;Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.83-95
    • /
    • 1987
  • The synergistic effect of combining radiation therapy and hyperthermia kills significantly more cells than using either modality alone. The reason for enhanced cell killing from the combined treatment is that the two modalities are complementary. For histopathological exmination, 102 rats were divided into 4 groups as hyperthermia, radiation, hyperthermia combined with radiation and normal control groups. The effect of prior irradiation (6-15 Gy of X-ray) on the response of small and large bowel of rats to $40^{\circ}C-44^{\circ}C$ (for 30 minutes) microwave (2450 MHz) hyperthermia was investigated. The musculature of the small and large intestine remained intact and the circumference of the histological sections were not significantly altered by the heated at $43^{\circ}C$ for 30 minutes. Thermal enhancement ratios of normal tissue is 1.0 Thermal enhancement ratio was not increased in combination therapy by evaluation of histopathologic changes in small and large intestine.

  • PDF

Modeling of Dual Head Gantry Radiotherapy System with Monte Carlo Simulation (듀얼 헤드 갠트리 방사선치료 시스템 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.627-632
    • /
    • 2017
  • In order to design a dual-head gantry radiotherapy system, the single head of LINAC was modeled using GATE as a preliminary study. The LINAC head was designed with VARIAN manufacturer's information. 6 MV photons were generated from the head and the photons w irradiated to a water phantom for beam evaluation. GATE simulation was segmented by two stages, the one was to generate X-ray spectrum and the other one was for irradiation X-ray to the water phantom. The quantitative results were described in Percentage depth dose and beam profile. Two field size conditions were employed as $5{\times}5$ and $10{\times}10cm^2$. After beam quality was verified, dual heads gantry radiotherapy system were simulated and they was compared to the single head of LINAC system in terms of dose deposition with in the phantom. The simulated LINAC head showed acceptable beam quality result for radiotherapy. The efficiency was calculated that deposited dose from dual heads was divided by the dose from single head. At all conditions, dual heads showed higher treatment efficiency. Efficiency was increased about 40 to 60%. Form the result, The dual head gantry system of new LINAC system will contribute to the practical radiotherapy of tumor and to reduce treatment time.

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF

Characterization of Particulates Containing Naturally Occurring Radioactive Materials in Phosphate Processing Facility (인광석 취급 산업체에서 발생하는 천연방사성물질 함유 입자의 특성 평가)

  • Lim, HaYan;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Phosphate rock, phosphogypsum, and products in phosphate processing facility contain naturally occurring radioactive materials (NORM). Therefore, they may give rise to enhanced radiation dose to workers due to inhalation of airborne particulates. Internal dose due to particle inhalation varies depending on particle properties. The objective of the present study was to characterize particle properties at the largest phosphate processing facility in Korea. A cascade impactor was employed to sample airborne particulates at various processing areas in the plant. The collected samples were used for characterization of particle size distribution, particle concentration in the air, and shape analysis. Aerodynamic diameters of airborne particulates ranged 0.03-100 ${\mu}m$ with the highest concentration at the particle size range of 4.7-5.8 ${\mu}m$ (geometric mean = 5.22 ${\mu}m$) or 5.8-9.0 ${\mu}m$ (geometric mean = 7.22 ${\mu}m$). Particle concentrations in the air varied widely by sampling area up to more than two orders of magnitude. The large variation resulted from the variability of mechanical operations and building ventilations. The airborne particulates appeared as spheroids or rough spherical fragments across all sampling areas and sampled size intervals. Average mass densities of phosphate rocks, phosphogypsums, and fertilizers were 3.1-3.4, 2.1-2.6, and 1.7 $gcm^{-3}$, respectively. Radioactivity concentration of uranium series in phosphate rocks varied with country of origin, ranging 94-866 $Bqkg^{-1}$. Among the uranium series, uranium was mostly concentrated on products, including phosphoric acid or fertilizers whereas radium was concentrated on byproducts or phosphogypsum. No significant radioactivity of $^{226}Ra$ and $^{228}Ra$ were found in fertilizer. However, $^{40}K$ concentration in fertilizer was up to 5,000 Bq $g^{-1}$. The database established in this study can be used for the accurate risk assessment of workers due to inhalation of airborne particles containing NORM. In addition, the findings can be used as a basic data for development of safety standard and guide and for practical radiation safety management at the facility.

Measurement and Monte Carlo Simulation of 6 MV X-rays for Small Radiation Fields (선형가속기의 6 MV X-선에 대한 소형 조사면 측정과 몬테 카를로 시뮬레이션)

  • Jeong Dong Hyeok;Lee Jeong Ok;Kang Jeong Ku;Kim Soo Kon;Kim Seung Kon;Moon Sun Rock
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 1998
  • Purpose : In order to obtain basic data for treatment plan in radiosurgery, we measured small fields of 6 MV X-rays and compared the measured data with our Monte Carlo simulations for the small fields. Materials and Methods : The small fields of 1.0, 2.0 and 3.0 cm in diameter were used in this study. Percentage depth dose (PDD) and beam Profiles of those fields were measured and calculated. A small semiconductor detector, water phantoms, and a remote control system were used for the measurement Monte Carlo simulations were Performed using the EGS4 code with the input data prepared for the energy distribution of 6 MV X-rays, beam divergence, circular fields and the geometry of the water phantoms. Results : In the case of PDD values, the calculated values were lower than the measured values for all fields and depths, with the differences being 0.3 to 5.7% at the depths of 20 to 20.0 cm and 0.0 to 8.9% at the surface regions. As a result of the analysis of beam profiles for all field sizes at a depth of loom in water phantom, the measured 90% dose widths were in good agreement with the calculated values, however, the calculated Penumbra radii were 0.1 cm shorter than measured values. Conclusion : The measured PDDs and beam profiles agreement with the Monte Carlo calculations approximately. However, it is different when it comes to calculations in the area of phantom surface and penumbra because the Monte Carlo calculations were performed under the simplified geometries. Therefore, we have to study how to include the actual geometries and more precise data for the field area in Monte Carlo calculations. The Monte Carlo calculations will be used as a useful tool for the very complicated conditions in measurement and verification.

  • PDF

The Evaluation of Radiation Therapy and Combined-modality Therapy for Non-small-cell Lung Cancer in Elderly (고령의 비소세포성폐암 환자의 방사선 및 병용치료에 대한 효과 평가)

  • Yoon, Won-Sup;Yang, Dae-Sik;Kim, Chul-Yong
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: To compare radiation therapy alone to combined modality therapy about survival rate and tolerance of elderly patients ($70=or{\geq}$) with non-small-cell lung cancer (NSCLC). $\underline{Materials\;and\;Methods}$: Between 1998 and 2002, 57 patients given radiation therapy due to NSCLC (Stage III) were analysed retrospectively. Radiation therapy alone (RT), concurrent chemoradiation (CRT), and sequential chemoradiation (SCRT) was done to 33, 16 and 8 patients, respectively. Patients' median age was 74 (range $70{\sim}85$). Male and female are 51 patients and 6 patients, respectively. 23 patients were stage IIIa and 34 were stage IIIb. Patients' characteristic distribution of RT and CRT was not significantly different except mass size that RT has a bigger than CRT. The fraction size of radiation therapy was 1.8 Gy in CRT and $1.8{\sim}3\;Gy$ in other groups. Total radiation dose was $51{\sim}63\;Gy$ according to the fraction size. If the prescribed total radiation dose was successfully irradiated, we stated that it was completion of radiation therapy. $\underline{Results}$: 52 patients were dead. Median period of radiation therapy was as follow: RT, 35 days, CRT, 60.5 days and SCRT, 35 days. Overall median survival time (MST) was 10.1 months. The 1 yr- and 2 yr-overall survival rate was 39.8% and 17.6%, respectively. MST of RT, CRT and SCRT was 8.9, 8.2 and 11.7 months, respectively. The 1 yr survival rate of RT, CRT and SCRT was 38.4%, 37.5% and 50% (not significant). Patients given incomplete radiation therapy were 12 (RT, 5 CRT, 6 SCRT, 1). N stage (p=0.081) and the difference of treatment methods (p=0.079) were the factors affecting incompletion of radiation therapy, but it was not significant. In case of combined-agents chemotherapy, 4 of 8 ceased radiation therapy. T stage ($T{\geq}3$), mass size (${\geq}5\;cm$), Karnofsky performance scale (${\leq}70$) and completion of radiation therapy were the prognostic factors in uni- and multi-variate analysis. $\underline{Conclusion}$: In elderly patients with NSCLC, radiation therapy alone was a treatment method with similar survival period compared with other methods. Generally, patients given radiation therapy alone was tolerable to a treatment. Before planning concurrent chemoirradiation in elderly patients with NSCLC, physicians pay attention to a selection of patients and chemotherapy agents considering general condition and toxicity.

The Use of Normal Tissue Complication Probability to Predict Radiation Hepatitis (간암의 정상조직손상확률을 이용한 방사선간염의 발생여부 예측가능성에 관한 연구)

  • Keum Ki Chang;Seong Jinsil;Suh Chang Ok;Lee Sang-wook;Chung Eun Ji;Shin Hyun Soo;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.277-282
    • /
    • 2000
  • Purpose : Though It has been known that the to tolerance of the liver to external beam irradiation depends on the irradiated volume and dose, few data exist which Quantify this dependence. However, recently, with the development of three dimensional (3-D) treatment planning, have the tools to Quantify the relationships between dose, volume, and normal tissue complications become available. The objective of this study is to investigate the relationships between normal tissue complication probabili쇼 (WCP) and the risk of radiation hepatitis for patients who received variant dose partial liver irradiation. Materials and Methods : From March 1992 to December 1994, 10 patients with hepatoma and 10 patients with bile duct cancer were included in this study. Eighteen patients had normal hepatic function, but 2 patients (prothrombin time 73$\%$, 68$\%$) had mild liver cirrhosis before irradiation. Radiation therapy was delivered with 10MV linear accelerator, 180$\~$200 cGy fraction per day. The total dose ranged from 3,960 cGy to 6,000 cGy (median dose 5,040 cGy). The normal tissue complication probability was calculated by using Lyman's model. Radiation hepatitis was defined as the development of anicteric elevation of alkaline phosphatase of at least two fold and non-malignant ascites in the absence of documented progressive. Results: The calculated NTCP ranged from 0.001 to 0.840 (median 0.05). Three of the 20 patients developed radiation hepatitis. The NTCP of the patients with radiation hepatitis were 0.390, 0.528, 0.844(median : 0.58$\pm$0.23), but that of the patients without radiation hepatitis ranged fro 0.001 to 0.308 (median .0.09$\pm$0.09). When the NTCP was calculated by using the volume factor of 0.32, a radiation hepatitis was observed only in patients with the NTCP value more than 0.39. By contrast, clinical results of evolving radiation hepatitis were not well correlated with NTCP value calculated when the volume factor of 0.69 was applied. On the basis of these observations, the volume factor of 0.32 was more correlated to predict a radiation hepatitis. Conclusion : The risk of radiation hepatitis was increased above the cut-off value. Therefore the NTCP seems to be used for predicting the radiation hepatitis.

  • PDF

The Effect of Partially Used High Energy Photon on Intensity-modulated Radiation Therapy Plan for Head and Neck Cancer (두경부암 세기변조방사선치료 계획 시 부분적 고에너지 광자선 사용에 따른 치료계획 평가)

  • Chang, Nam Joon;Seok, Jin Yong;Won, Hui Su;Hong, Joo Wan;Choi, Ji Hun;Park, Jin Hong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: A selection of proper energy in treatment planning is very important because of having different dose distribution in body as photon energy. In generally, the low energy photon has been used in intensity-modulated radiation therapy (IMRT) for head and neck (H&N) cancer. The aim of this study was to evaluate the effect of partially used high energy photon at posterior oblique fields on IMRT plan for H&N cancer. Materials and Methods: The study was carried out on 10 patients (nasopharyngeal cancer 5, tonsilar cancer 5) treated with IMRT in Seoul National University Bundang Hospital. CT images were acquired 3 mm of thickness in the same condition and the treatment plan was performed by Eclipse (Ver.7.1, Varian, Palo Alto, USA). Two plans were generated under same planing objectives, dose volume constraints, and eight fields setting: (1) The low energy plan (LEP) created using 6 MV beam alone, (2) the partially used high energy plan (PHEP) created partially using 15 MV beam at two posterior oblique fields with deeper penetration depths, while 6 MV beam was used at the rest of fields. The plans for LEP and PHEP were compared in terms of coverage, conformity index (CI) and homogeneity index (HI) for planning target volume (PTV). For organs at risk (OARs), $D_{mean}$ and $D_{50%}$ were analyzed on both parotid glands and $D_{max}$, $D_{1%}$ for spinal cord were analyzed. Integral dose (ID) and total monitor unit (MU) were compared as addition parameters. For the comparing dose to normal tissue of posterior neck, the posterior-normal tissue volume (P-NTV) was set on the patients respectively. The $D_{mean}$, $V_{20Gy}$ and $V_{25Gy}$ for P-NTV were evaluated by using dose volume histogram (DVH). Results: The dose distributions were similar with regard to coverage, CI and HI for PTV between the LEP and PHEP. No evident difference was observed in the spinal cord. However, the $D_{mean}$, $D_{50%}$ for both parotid gland were slightly reduced by 0.6%, 0.7% in PHEP. The ID was reduced by 1.1% in PHEP, and total MU for PHEP was 1.8% lower than that for LEP. In the P-NTV, the $D_{mean}$, $V_{20Gy}$ and $V_{25Gy}$ of the PHEP were 1.6%, 1.8% and 2.9% lower than those of LEP. Conclusion: Dose to some OARs and a normal tissue, total monitor unit were reduced in IMRT plan with partially used high energy photon. Although these reduction are unclear how have a clinical benefit to patient, application of the partially used high energy photon could improve the overall plan quality of IMRT for head and neck cancer.

  • PDF

Distribution of Antibiotic Resistant Microbes in Aquaculture Effluent and Disinfection by Electron Beam Irradiation (양식장 배출수중의 항생제 내성균 분포 및 전자빔 살균처리)

  • Jang, Eun-Hee;Lim, Seung-Joo;Kim, Tak-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.492-500
    • /
    • 2011
  • Antibiotic resistant microbes were isolated in catfish, trout, eel and loach aquaculture effluent. The distribution of antibiotic resistant microbes in aquaculture effluent and the disinfection efficiency of antibiotic resistant microbes by electron beam irradiation were investigated. It was shown that the multi-drug resistant bacteria were Aeromonas sp., Citrobacter sp., Bacillus sp., Marinobacter sp., Pantoea sp., Pseudomonas sp. and Enterobacter sp. in aquaculture effluent. 41.7% of total strains showed the resistance against one antibiotic agent, and 58.3% of total strains showed the resistance against more than two antibiotics. It was evidently shown that the toxicity and physicochemical properties of antibiotics can be estimated using Quantitative Structure Analysis Relationship (QSAR). Electron beam irradiation was very effective for the disinfection of antibiotic resistant bacteria from aquaculture effluent, in which the disinfection efficiency was approximately 99.9% with electron beam of 1 kGy.

Analysis on the Decrease of Planning Target Volume in the Case of Lung Radiation Surgery with the Application of Respiratory Gated Radiotherpy Method (폐암 환자의 방사선수술 시 호흡연동 방사선치료 방법의 적용을 통한 계획용표적체적 감소 효과 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mee-Sun;Jung, Jae-Uk
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.263-268
    • /
    • 2008
  • The application of a respiratory gated radiotherpy method to the lung radiation surgery was evaluated compared with the conventional method in which the whole tumor motion range is considered in the delineation of PTV (Planning target volume). The four dimensional CT simulation images were acquired for the five NSCLC (Non-small cell lung cancer) patients for radiation surgery. The respiratory gated plan was prepared with the 50% phase CT images and the conventional method was planned based on the ITV (Internal target volume) which include all the target volumes created in each phase CT images within a whole respiratory period. The DVH (Dose volume histogram) of OAR (Organ at risk) which calculated in each method was compared for the evaluation of the plan properness. The relative decrease of OARs' DVH were verified in the application of respiratory gated method. The average decrease rate were $16.88{\pm}9.97%$ in the bronchus, $34.13{\pm}19.15%$ in the spinal cord, $28.42{\pm}18.49%$ in the chest wall and $32.48{\pm}16.66%$ in the lung. Based on these results, we can verified the applicability and the effectiveness of the respiratory gated method in the lung radiation surgery.

  • PDF