• Title/Summary/Keyword: 석회석 혼합시멘트

Search Result 43, Processing Time 0.028 seconds

Simulation on the Alternation of Limestone for Portland Cement Raw Material by Steel By-products Containing CaO (CaO 함유 철강 부산물을 활용한 시멘트 원료 석회석 대체 시뮬레이션)

  • Jae-Won Choi;Byoung-Know You;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this study, to reduce CO2 emission in the cement manufacturing process, we evaluated the limestone that is used as a raw material for cement, substituted with steel slag by the various substituted levels. Based on the chemical composition of each raw materials including limestone, and blast furnace slow cooling slag, converter slag, and KR slag as an alternative raw material, we simulated the optimal cement raw mixture by the substitution levels of limestone. Test results indicated that the steel slags contain a certain level of CaO that can be used as alternative decarbonated raw materials, and it has enough to partially reduce the amount of limestonem. And we estimated the maximum usable levels of each raw material. In particular, it was confirmed that by using a mixture of these raw materials rather than using them one by one, the effect of reducing limestone was increased and CO2 emission from the cement manufacturing process could be reduced.

A Study on the Basic Properties of Cement Mortar Using Limestone Powder (석회석 미분말을 사용한 시멘트 모르타르의 기초특성에 관한 연구)

  • Kang, In-Gyu;La, Jung-Min;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.19-20
    • /
    • 2022
  • Portland Limestone Cement (PLC) is a blended cement using limestone powder as SCMs (Supplementary Cementitious Materials), and is currently regarded as an essential means for achieving carbon neutral in the cement industry. This study was performed to investigate the fresh and hardened properties of cement mortar according to the fineness and replacement ratio of limestone powder. As a result, the compressive strength of mortar used high blaine limestone powder were equivalent level of that of OPC.

  • PDF

Material Properties of Concrete Produced with Limestone Blended Cement (석회석 혼합 시멘트로 제조된 콘크리트의 기초 물성)

  • Bang, Jin-Wook;Kwon, Seung-Jun;Shin, Kyung-Joon;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 2015
  • This paper presents an experimental investigation in order to evaluate fresh and hardened properties of LP (Limestone Powder) blended cement concrete. The cement contents of the mixtures are replaced by LP in the range of 10%, 15%, 25%, and 35%, while a control mixture is prepared with only OPC (Ordinary Portland Cement). The fresh concrete properties like slump and air content are similar to those of control mixture up to 35% of replacement ratio of LP, however a delay in setting time is evaluated. The hardened properties including compressive strength, flexural strength, and rapid freezing and thawing resistance shows similar results of control mixture up to 15% of replacement. Relatively lower strength development is evaluated over 25% replacement of LP. For accelerated carbonation test, resistance to carbonation rapidly decreases with increasing LP replacement ratio due to the limited amount of $Ca(OH)_2$. From the study, LP replacement under 15% can be adopted considering reduction of strength and resistance to carbonation.

A study on the effects of fine sludge powder addition on portland cement-limestone sludge system (포틀랜드시멘트-석회석슬러지계에서의 슬러지 미분말첨가반응 효과에 대한 연구)

  • Ahn, Ji-Whan;Kim, Hwan
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.27-31
    • /
    • 1994
  • We tested the limestone sludge produced in Pohang Iron & Steel Co., Ltd. as a filler powder for the effective use of portland cement. Hydration process was investigated by measuring the hydration rate, the amounts of non-evaporable water and compressive strength of cement-limestone sludge paste prepared by mixing limes-tone sludge with cement. The results obtained in this study can be summarized as follows: 1. There is no significant difference between the cases of adding up to 10% limestone sludge and those of unmixed cement system. However the reaction rate increases in the 5% limestone sludge system(due to the effects of fine). 2. The compressive strength increases proportionally with increasing the measured amount of non-evaporable water, Adding 5% limestone sludge also increases the strength a little higher, and the compressive strength and calcium silicate hydrates. In the case of the mixed limestone sludge, $2\theta$=$11.7^{\circ}$ peak appears in the samples of 28 days hydration. This peak indicted the presence of calcium carboaluminate hydrate. Although limestone sludge is generally regarded as a inert materials, some kinds of cement can produce a calcium carboaluminate by reacting with aluminate in cement pastes.

  • PDF

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement (석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향)

  • In-Gyu Kang;Jin-Man Kim;Sang-Chul Shin;Geon-Woo Kim;Tae-Yun An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.82-93
    • /
    • 2024
  • Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.

The Effect of Addition of Blast-furnace Slag Powder and Limestone powder on Shotcrete Binder with Calcium Aluminate Accelerator (고로슬래그 분말 및 석회석 분말이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향)

  • Kang, ong-Hee;Kim, Gyu-Yong;Choi, Jae-Won;Koo, Kyung-Mo;Hwang, Bong-Choon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.86-93
    • /
    • 2020
  • Shotcrete concrete is generally used in the form of ready-mixed concrete products using type I ordinary portland cement(hereinafter referred to as OPC) and about 5% of accelerator mixed separately in the field. In this study, we tested the effect of addition of slag powder(SP) and limestone powder(LSP) on a penetration resistance, compressive strength of binder for shotcrete using calcium aluminate type accerlerator. And we analysed hydrates and pore structure effects on mortar performance. In the future, it is expected to be useful for manufacturing optimized composite cement as a binder for shotcrete.

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

Physical Properties of Cement Using Slag as Raw Mix of Clinker (슬래그를 클링커 혼합원료로 사용한 시멘트의 물리적 특성)

  • Young-Jun Lee;Do-young Kwon;Bilguun Mend;Yong-Sik Chu
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.12-20
    • /
    • 2024
  • The global cement industry emits approximately 2.9 billion tons of greenhouse gases, of which 1.74-1.89 billion tons are emitted from limestone, which is the main raw material for clinkers. Therefore, the feasibility of using slag, a non-carbonated CaO-based raw material, must be investigated, and the physical properties of cement must be considered. In this study, the mixing ratios of the raw mix and properties of cement were analyzed. The CaCO3 replacement ratio was limited when one type of slag was used; however, when the mixed slag was utilized, the CaCO3 replacement ratio increased by more than 12 %. The compressive strength of the slag-incorporated cement was lower than that of Ordinary Portland Cement (OPC). Therefore, the lime saturation factor (LSF) of the raw mix and fineness of the cement were increased to improve the compressive strength. The compressive strength of cement with improved fineness was similar to that of OPC for a CaCO3 replacement ratio of up to 6 %, and it decreased as the CaCO3 replacement ratio was increased to 9 %. When both fineness and LSF were increased, the compressive strength and flow value of the cement with a CaCO3 replacement ratio of 12 % were similar to that of OPC.