• Title/Summary/Keyword: 석탄가스화발전 슬래그

Search Result 33, Processing Time 0.019 seconds

Effects of pre-curing process on improvement of the compressive strength of IGCC-slag-based-geopolymer (IGCC 용융 슬래그로 제조된 지오폴리머의 강도증진에 Pre-curing이 미치는 영향)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.295-302
    • /
    • 2017
  • In this study, the effect of pre-curing process on the enhancement of mechanical properties of IGCC-slag-based-geopolymer was studied. Pre-curing is a process in which the green geopolymer is left at room temperature for a certain period of time prior to the high-temperature curing, and it is known as increasing the strength of a specimen. Therefore, in this experiment, the compressive strength of the geopolymers was measured according to various pre-curing conditions, and microstructure and crystal phase changes were observed by SEM and XRD, respectively. The W/S ratio was determined to be 0.26, which can offer the maximum geopolymer strength with easy molding ability, and the concentration of the alkali solution was 15 M. Pre-curing was performed at room temperature for 0 to 27 days. Compressive strength of the geopolymer made with pre-curing process increased by 36~87 % compared with the specimens made with no pre-curing process. Those improved compressive strength for the pre-cured geopolymer was confirmed owing to promotion effect of pre-curing process on generation of C-S-H gel and zeolite phases, which were analyzed using by XRD and SEM measurement.

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.

Manufacturing of geopolymers for replacing autoclaved lightweight concrete panels (ALC 패널 대체용 지오폴리머의 제조)

  • Kim, Minjeong;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Lightweight geopolymers were fabricated by using fused slag from integrated gasification combined cycle as a law material and Si sludge from silicon wafer process as a bloating material for the purpose of replacing autoclaved lightweight concrete (ALC). Density and compressive strength of geopolymers were measured and compared with the properties of ALC according to the variation of mol concentration of alkaline activator, W/S ratio, addition of fibers, and addition of polystyrene and the possibility of replacing ALC panel was estimated through the comparisons. Although the geopolymer satisfying the standard of ALC panel was not made by controlling mol concentration and W/S ratio, addition of inserts such as fibers and polystyrene insert was tried to overcome the obstacle of enhancing properties. Geopolymers cannot satisfying the standard of ALC panel by adding carbon or glass fibers; however, adding fibers can be suggested as one of the methods enhancing compressive strength because the compressive strength of the specimen containing 0.3 wt.% glass fibers was increased by 3 times. The maximum addition of polystyrene insert was turned out to be 50 vol.% and the properties of geopolymers varied by the method of insertion. When using single polystyrene insert, compressive strength was 17.8 MPa and density was 0.996 g/㎤ which were similar values to the standard of ALC panel. If the difficulties of reproductivity of production and insertion method of inserts were overcome through the future research, the geopolymers containing polystyrene inserts could possibly replace ALC panel.