• Title/Summary/Keyword: 석탄가스화발전

Search Result 199, Processing Time 0.027 seconds

Performance Evaluation of the IGCC PDU System by Static Process Simulation (IGCC PDU 플랜트의 정적모사를 통한 성능평가)

  • 이승종;이진욱;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.9-14
    • /
    • 1998
  • 석탄가스화 복합발전시스템(Integrated Gasification Combined Cycle, IGCC)은 기존의 미분탄 연소 발전 방식에 비해 발전효율이 5-10%이상 높고, 공해물질 배출 특성에 있어서도 SOx와 NOx를 각각 95% 및 75% 이상 감소시키고 재는 용응 슬러 형태로 처리하는 발전시스템이다. 이와 같은 고효율 및 환경 친화적인 특성으로 인하여 IGCC 시스템은 차세대 석탄화력 발전 방식으로서 각광받고 있으며, 이미 선진 공업국들은 70년대 석유파동 이후 IGCC 기술의 개발을 활발히 진행하여, 최근에는 250MW 이상 출력의 상용화급 플랜트를 가동 또는 건설 중에 있으며, 머지않아 상업화에 도달할 전망이다. 또한 국내에서도 최근 전력 수요의 급증과 전 세계적으로 확산되고 있는 환경 규제의 강화 등으로 우리의 실정에 맞는 IGCC 공정의 개발이 활발히 진행되고 있다. (중략)

  • PDF

Fundamental properties of mortar using pretreated CGS as fine aggregate (전처리에 의한 개질 CGS를 잔골재로 활용한 모르타르의 기초적 특성)

  • Kim, Su-Hoo;Beak, Sung-Jin;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.99-100
    • /
    • 2022
  • This study analyzed the basic characteristics of mortar using CGS modified by pretreatment. As a result of the analysis, it was found that CGS after reforming can be partially replaced with fine aggregates to solve the existing air volume reduction problem when used, and can contribute positively in terms of securing fluidity and improving strength. Therefore, it is considered necessary to verify as a functional material of CGS through concrete durability experiments as a future task.

  • PDF

초초임계 화력발전용 터빈 및 보일러소개

  • Gong, Byeong-Uk;Gang, Seong-Tae;Lee, Yeon-Su
    • 기계와재료
    • /
    • v.22 no.2
    • /
    • pp.20-30
    • /
    • 2010
  • 석탄화력발전소의 효율향상은 스팀온도 및 압력의 증가를 통해 꾸준하게 이루어지고 있으며, 이러한 고효율의 화력발전은 사용 연료의 감소 뿐 아니라 $SO_x$, $NO_x$, $CO_2$ 등의 환경 가스배출을 감소시키는 효과도 있다. 이에 따라 운전조건을 고온, 고압화하려는 노력이 전 세계적으로 꾸준히 전개되고 있으며, 경제성 있고 높은 고온특성을 갖는 터빈 및 보일러 소재확보 여부가 발전소 건설 가능성을 결정하는 가장 주요한 요소 중 하나로 작용하고 있다. 본 고에서는 USC(Ultra Super Critical) 조건에 사용하기 위한 소재의 개발과정과 현대 사용되고 있는 다양한 발전용 고온소재의 특징에 대해 기술하고자 한다.

  • PDF

Reactivity of Coal Char Gasification with $CO_2$ at Elevated Pressure (가압하 석탄 촤의 $CO_2$ 가스화 반응성 연구)

  • 박호영;안달홍;김시문;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.231-240
    • /
    • 2003
  • Reactivity of Char-CO$_2$ gasification of five coals for power generation was investigated with PTGA in the temperature range 850∼1000$^{\circ}C$ and the pressure range 0.5∼2.0 MPa. The effect of coal rank, initial char characteristics and pressure on the reaction rate was evaluated for five chars. The reactivity of low lank coal char was better than that of high rank coal char, and this could be explained with the initial pore structure and surface area of char. Meso/macro-pores of char seems to markedly affect char reactivity by way of providing channels for diffusion of reactant gas into the reactive surface area. For the range of tested pressure, the reaction rate is proportional to CO$_2$ partial pressure and the reaction order ranges from 0.4 to 0.7 for five chars. The effect of total pressure on the reaction rate was small, and kinetic parameters, based on the unreacted core model, were obtained for five chars.

The Design Conditions and the Initial Operation Results of 1 Ton/Day Class Dry Feeding Coal-Gasification System (건식 석탄공급형 1 Ton/Day급 가스화시스템 설계조건 및 시운전결과)

  • Seo, Hai-Kyung;Chung, Jae-Hwa;Ju, Ji-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.352-359
    • /
    • 2009
  • KEPRI is developing a Korean type coal-gasification system and the scale is 20 ton/day. Prior to this pilot plant, a 1 ton/day class gasification system will be used for pre-testing of several coal types. This paper introduces the configuration and design conditions of this 1 ton/day class system, presenting the gas/coal ratio, oxygen/coal ratio, cold gas efficiency, CFD analysis of gasifier, and others. The existing combustion furnace for residual oil was retrofitted as a coal gasifier and a vertical and down-flow type burner was manufactured. Ash removal is carried out through a water quencher and a scrubber following the quencher, and the sulfur is removed by adsorption in the activated carbon tower. The gas produced from the gasifier is burned at the flare stack. In this paper, the results of design conditions and initial operation conditions of I ton/day gasification system are compared together.

Analysis of Efficiency Enhancement of the Integrated Gasification Combined Cycle with Oxy-Combustion Carbon Capture by Changing the Oxygen Supply System (순산소연소 이산화탄소 포집을 적용한 석탄가스화 복합화력 발전시스템에서 산소공급방식 변경에 의한 효율향상 분석)

  • CHO, YEON WOO;AHN, JI HO;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2019
  • As a solution to the growing concern on the global warming, researches are being actively carried out to apply carbon dioxide capture and storage technology to power generation systems. In this study, the integrated gasification combined cycle (IGCC) adopting oxy-combustion carbon capture was modeled and the effect of replacing the conventional air separation unit (ASU) with the ion transport membrane (ITM) on the net system efficiency was analyzed. The ITM-based system was predicted to consume less net auxiliary power owing to an additional nitrogen expander. Even with a regular pressure ratio which is 21, the ITM-based system would provide a higher net efficiency than the optimized ASU-based system which should be designed with a very high pressure ratio around 90. The optimal net efficiency of the ITM-based system is more than 3% higher than that of the ASU-based system. The influence of the operating pressure and temperature of the ITM on system efficiency was predicted to be marginal.

Economic Evaluation for Korea Type of 300 MW IGCC Demonstration Plant Technology Development Project (실물옵션을 활용한 한국형 300 MW급 IGCC 실증플랜트 기술개발사업의 경제성 분석)

  • Eom, Su-Jeong;Nam, Young-Sik
    • Journal of Climate Change Research
    • /
    • v.3 no.4
    • /
    • pp.271-280
    • /
    • 2012
  • The study aims to analyze economic viability of Integrated Gasification Combined Cycle, an innovative technology to utilize clean coal effectively and efficiently in the era of energy crisis. The study is conducted to evaluate business value of 300 MW IGCC demonstration plant technology development based on binomial option, in consideration of uncertainty of fuel price. Binomial option is one of the real option valuation methods, which is ideally suited to irreversible decision making under uncertainty. With this analysis, it shows that investment value is higher compared with economic evaluation based on discounted cash flow, since this method can measure quantity. As a result, this study is proved to be economically feasible, which have a positive impact on the next generation of IGCC and the connection with Carbon Capture and Storage.

국내 화력발전산업의 연료의 효율적 배분과 CO2 저검규모 추정

  • Lee, Myeong-Heon
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.3-25
    • /
    • 2012
  • Generally speaking, firms, faced with a regulatory environment, are likely to use more or less inputs than optimal level due to allocative inefficiency of inputs. This paper, first, tests allocative efficiency of fuel inputs and calculates the divergence between the actual and optimal levels of each fuel input conditional on the optimal level of capital stock in Korean thermal power industry. Then, given that each fuel is efficiently allocated. potential reduction of $CO_2$ is estimated over the period 1987~2008. The null hypothesis of allocative efficiency with respect to all fuels is rejected, indicating that thermal power plants fail to attain cost minimization subject do market prices. Allocative efficiency between each pair of fuels is also tested; efficient uses of fuels relative to each other are all rejected. Empirical results indicate that coal and gas are used more and oil is used less than optimal level. On average, more than 10 million tons of $CO_2$ per year could be reduced by achieving allocative efficiency of fuels.

  • PDF