• Title/Summary/Keyword: 석면건축자재

Search Result 17, Processing Time 0.021 seconds

The Production, the Use, the Number of Workers and Exposure Level of Asbestos in Korea (우리나라의 석면 생산과 사용 및 근로자 수와 노출농도의 변화)

  • Choi, Jung Keun;Paek, Do Myung;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.242-253
    • /
    • 1998
  • South Korea has been producing asbestos over 60 years. The use of asbestos was over 50 years for production of asbestos slate and 27 years for asbestos friction materials including asbestos textile and brake-lining. Thus, it can be supposed that asbestos related diseases such as asbestosis, lung cancer and mesothelioma could be found in the vulnerable workers exposed to asbestos in 1955-1975, given the average latency period of 10-30 years. Asbestos was produced primarily by Japanese during World War II In Korea. The production of chrysotile peaked to 4,815 tons in 1944. From 1978 to 1984, 10,000 tons of asbestos were produced annually. However, the production was interrupted by raising labor costs and extinction of mine reserves, and finally they had to depend on import for the need of asbestos. In 1945, there were 16 asbestos mines, in total, with the addition of new asbestos mines in South Korea. Imports of asbestos was increased from 74,000 tons to 95,000 tons during the period of 1976 - 1992. But the imports was reduced to 88,000 tons in 1995. Since, in addition to the import of asbestos itself, the imports of asbestos products were increased as well and the accumulation of asbestos reached to 30,000 tons during the period of 1964 to 1993. In 1965, there was only one asbestos company with 207 employees. But the size of asbestos industry has been expanded so much that 118 asbestos companies could be found in 1993 with 1,476 workers. However, there was no record on the survey of asbestos concentration to which workers were exposed in any companies in 1983. The record of the air-borne concentration of the asbestos in textile working places in 1984 showed 6.7 fibers/cc by geometric mean(GM), but it was reduced to 1.2 fibers/cc in 1993. GMs of asbestos in working places for construction materials and asbestos textiles were also decreased from 1.7 fibers/cc to 0.55 fibers/cc during the period of 1984 - 1996.

  • PDF

A Study on the Detoxification of Chrysotile and the use of High-density Extruded Cement Panel Reinforcement Fibers (백석면의 무해 섬유화 처리 방법과 고밀도 압출성형 패널 활용 연구)

  • Jang, Kyong-Pil;Kim, Tae-Hyoung;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.223-228
    • /
    • 2021
  • The final disposal method for asbestos building materials is to be landfilled at a designated waste landfill in accordance with the Waste Management Act. However, it is difficult to secure a domestic designated waste landfill site to landfill the entire amount of asbestos waste, which is expected to emit more than 400,000 ton/year by 2044. In this study, a detoxification treatment was performed on a ceiling tex with a density of 1.0 to 1.2g/cm3 containing 3 to 7% of chrysotile, and it was used as a reinforcing fiber for extruded panels. It was confirmed that asbestos components were detoxified through the reaction process using 30% oxalic acid and carbon dioxide, and it was recognized that these detoxifying properties were maintained even after extrusion molding. However, it was found that milling to a fiber size of less than 1mm for complete detoxification of asbestos resulted in a decrease in reinforcing performance. Therefore, in the case of using detoxified asbestos fibers in the extrusion molding process, it is considered desirable to add fibers with a length of 5mm or more to improve the reinforcing performance.

A Study on the Characteristics of Chrysotile and Amosite by Acid and Heat Treatment (산 및 열처리 과정에 따른 주요 석면의 특성변화에 관한 연구)

  • Lee, Jin Hyo;Lee, Su Hyun;Kang, Mi Hye;Bae, Il Sang;Kim, Ik Soo;Han, Kyu Mun;Eo, Soo Mi;Jung, Kweon;Koo, Ja Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.371-379
    • /
    • 2015
  • This study is purposed to seek the characteristics of both asbestos in accordance with acid and heat treatment for chrysotile and amosite used mainly as building materials. Results of acid treatment, the refractive index, the elongation sign, the extinction of acid-treated chrysotile were mostly similar to those of untreated chrysotile regardless of pH, elapsed time. But the characteristics of acid-treated chrysotile were different from those of untreated chrysotile after 8 weeks, at pH 1.2 acidic solution. When chrysotile treated with acid, weight ratio (%) of O and Mg fluctuated greatly in accordance with acid treatment unlike Si. But the change of constituents ratio (%) was small as time passed after acid treatment. The refractive index, the elongation sign and the extinction of acid-treated amosite were mostly similar to those of untreated amosite regardless of pH, elapsed time. When amosite was treated with acid, weight ratio (%) of Fe slightly increased. But in case of O, a contrary tendency was seen. Results of heat treatment, the higher the temperature, the more increased the refractive index of chrysotile. When chrysotile was heated for 10 minutes at $1,100^{\circ}C$, the elongation sign of chrysotile changed from positive(+) to negative(-). The extinction of chrysotile didn't change apparently in accordance with heat treatment. Also weight ratio (%) of O and Mg fluctuated greatly in accordance with heat treatment unlike Si. The higher the temperature, the more increased the refractive index of amosite. The elongation sign and the extinction of amosite didn't change apparently in accordance with heat treatment. Also weight ratio (%) of O and Fe fluctuated greatly in accordance with heat treatment. But weight ratio (%) of Si and Mg of heated amosite were mostly similar to those of untreated amosite regardless of temperature, heating time.

Characteristics of Indoor air concentration of asbestos in buildings (건물의 실내공기 중 석면 분포 특성)

  • 김윤신;이철민;박원석;문정숙;엽무종;이태형
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.427-428
    • /
    • 2003
  • 현대인의 경우 대부분이 하루 중 80% 이상의 시간을 어떤 형태의 가정, 사무실, 공공건물, 학교, 병원, 지하시설물, 상가, 음식점, 자동차, 지하철 등의 실내공간에서 생활하고 있으며, 특히 어린이와 노약자, 병약자들의 경우 대부분의 시간을 실내에서 보내고 있는 실정에 있어 실내공기오염이 인체에 미치는 영향은 크다고 할 수 있다. 실내환경에는 대기환경과는 달리 물리적, 화학적, 생물학적으로 매우 다양한 오염물질들은 복합적인 배출원에서 기인되며 그 배출량은 물질에 따라 상당히 편차가 있을 뿐 아니라 오염물질 농도분포 역시 시간적, 공간적 특성에 따라 다양하게 나타날 수 있으며, 실내공기의 상태는 일차적으로 외부공기의 영향을 받게 되고 이차적으로는 담배연기, 스토브, 오븐, 시멘트, 건축자재, 페인트 및 벽면의 입자상 물질 등과 같은 실내오염원으로부터 영향을 받아 오염상태가 심해진다. (중략)

  • PDF

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.

Asbestos Content in Friable Sprayed-on Surface Material and Airborne Fiber Concentrations in Commercial Buildings (대형건물내 비고형 석면함유 건축자재에 의한 기중 석면오염 및 관리실태)

  • Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.137-146
    • /
    • 1995
  • Twenty(20) large commercial buildings located in Seoul with friable sprayed-on surface insulation material on ceilings were investigated for asbestos content in bulk material by polarized light microscopy and for airborne fiber concentrations in buildings by phase contrast microscopy. In addition, such building-related variables as building age, numbers of traffic, airflow, surface conditions of the ceiling, temperature, and humidity were studied for any correlation with airborne fiber concentrations. The results were as follows: 1. Chrysotile asbestos was found in two bulk samples with 3-5% content and with <1%in one sample out of total 20 bulk samples collected. Glass fiber and mineral wool were the two major constituents of the bulk samples. 2. The ceiling surfaces were very friable in 16 buildings and were relatively hard in 4 buildings. The friability of the surface material was dependent upon the type and the amount of binder that had been mixed with the sprayed-on surface material. 3. Airborne fiber concentrations were log-normally distributed and the geometric mean(geometric standard deviation) fiber concentrations in the underground parking lots, inside buildings, and outdoor ambient air were 0.0063(1.97)f/cc, 0.0068(2.29)f/cc, and 0.0033(2.36)f/cc, respectively. 4. No significant relationship of airborne fiber concentrations and all building-related variables studied except humidity was found. The results of this study suggest that the sprayed-on surface insulation material found in some commercial buildings may possibly be contaminated with asbestos. Since most of the ceiling surfaces surveyed were very friable and poorly maintained and the airborne fiber concentrations were relatively high, there is a possibility of asbestos fiber contamination in these buildings, particularly at those buildings with asbestos-contaminated surface material. Since poorly maintained surface conditions were thought to be a source of high airborne fiber concentrations, there is a urgent need of a systematic operation and maintenance program. Further study of non-occupational asbestos exposure in general population utilizing advanced analytical technique such as transmission electron microscopy is highly recommended.

  • PDF

Characteristics of Generated Fibrous/Particulate Matters from Asbestos-Containing Building Materials(ACBMs) (해체·제거 작업 시 석면함유 건축자재에서 발생되는 섬유 및 입자상 물질의 특성)

  • Choi, Sungwon;Jang, Kwang Myoung;Park, Kyung Hoon;Kim, Dae Jong;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.184-193
    • /
    • 2015
  • Objectives: This study focused on three aspects: characterizing concentrations of airborne particles by size distributions and asbestos fibers generated by various building materials; analyzing the characteristics of fibers produced by each simulation and asbestos fibers released from ACBMs; and investigating correlations of airborne asbestos fibers and particles generated and association of particle and asbestos concentrations. Methods: We selected three ACBMs including an insulation board, cement asbestos slate and wallboard. We constructed 4 scenarios; a) crushing with a hammer; b) cutting with a industrial knife; c) brushing with a metal brush; and d) tightening & loosening with a hand drill. We implemented one simulation for 30 seconds followed by 30 seconds resting period. We repeated a total of 5 cycles for 5 minutes. Results: The highest concentration of particulate & fibrous matters was from crushing with a hammer in each scenario followed by brushing with a metal brush, cutting with a industrial knife, and tightening & loosening with a hand drill. For ACBMs studied, asbestos concentrations were highest from an insulation board followed by cement asbestos slate, and wallboard. No difference in terms of concentration was found between an insulation board and asbestos slate. Fibers with $5{\sim}20{\mu}m$ in length were included in 76~90% of total fibrous matters. The distribution of the straight form fibers was greater than that of the curl form. About 90% of $PM_{Total}$ released from ACBMs was consisted of $PM_{10}$ while only 10% of $PM_{Total}$ was $PM_{2.5}$. Particulate matters like $PM_{2.5}$ was significantly correlated with fibrous matters($R^2=0.81$). Conclusions: We found ACBMs can significantly release asbestos fibers as well as $PM_{2.5}$. Concentrations of asbestos generated by ACBMs were well correlated with $PM_{2.5}$.